

© КОЛЛЕКТИВ АВТОРОВ, 2022 УДК 616.411:615.011

HTTP://DOI.ORG/10.21292/2075-1230-2022-100-10-44-49

Реакция внеклеточного матрикса селезенки мышей при введении липосомальной формы декстразида в периоде стабилизации БЦЖ-индуцированного воспаления

Л. Б. КИМ, А. Н. ПУТЯТИНА, Г. С. РУССКИХ

ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины», г. Новосибирск, РФ

Цель: изучить реакцию внеклеточного матрикса (ВКМ) селезенки при введении липосомальной формы декстразида (ЛФДЗ) мышам в периоде стабилизации БЦЖ-индуцированного гранулематоза.

Материалы и методы. Воспроизведена модель генерализованного туберкулезного воспаления путем введения мышам микобактерий в составе вакцины БЦЖ (БЦЖ-инфицированные мыши). Контролем служили интактные мыши. Инфицированным мышам в периоде стабилизации процесса вводили ингаляционно и внутриперитонеально ЛФДЗ и оценивали основные компоненты ВКМ.

Результаты исследования. У БЦЖ-инфицированных мышей отмечено снижение структурных компонентов протеогликанов (ПГ), но увеличение профибротических фракций гидроксипролина (ГОП), активности матриксных металлопротеиназ и отсутствие различий в содержании тканевых ингибиторов, что свидетельствует о фиброзировании органа. При обоих способах введения ЛФДЗ были увеличены содержание уроновых кислот в ПГ, активность гиалуронидаз, но снижено содержание белковосвязанного ГОП и не было различий в содержании свободного ГОП с группой инфицированных мышей. При ингаляционном введении ЛФДЗ было снижено содержание профибротических фракций ГОП и увеличено содержание галактозы в ПГ до уровня мышей группы контроля, при внутриперитонеальном — снижено содержание белка в ПГ.

Ключевые слова: липосомальная форма декстразида, туберкулезный гранулематоз, внеклеточный матрикс селезенки, гликозаминогликаны, коллагены, матриксные металлопротеиназы/тканевые ингибиторы металлопротеина

Для цитирования: Ким Л. Б., Путятина А. Н., Русских Г. С. Реакция внеклеточного матрикса селезенки мышей при введении липосомальной формы декстразида в периоде стабилизации БЦЖ-индуцированного воспаления // Туберкулёз и болезни лёгких. – 2022. – Т. 100, № 10. – С. 44-49. http://doi.org/10.21292/2075-1230-2022-100-10-44-49

A Reaction of the Mouse Spleen Extracellular Matrix to Administration of Liposome-Encapsulated Dextrazide in Stabilization Period of BCG-Induced Inflammation

L. B. KIM, A. N. PUTYATINA, G. S. RUSSKIKH

Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia

The objective: to study a response of the spleen extracellular matrix (ECM) to the liposome-encapsulated dextrazide (LEDZ) administration in the stabilization period of BCG-induced granulomatosis.

Subjects and Methods. A model of generalized tuberculosis inflammation was reproduced by injecting mice with mycobacteria from BCG vaccine (BCG-infected mice). Intact mice served as controls. During inflammation stabilization, the infected mice were dosed with LEDZ by inhalation and intraperitoneal injection, and main ECM components were assessed.

Results. The BCG-infected mice showed a decrease in the structural components of proteoglycans (PGs) but demonstrated elevated profibrotic fractions of hydroxyproline (Hyp), enhanced activity of matrix metalloproteinases (MMPs) and no differences in the content of their tissue inhibitors (TIMPs), that indicated the fibrosis of the organ. Despite the way of LEDZ administration, the level of uronic acids in PGs and activity of hyaluronidases increased but the content of protein-bound Hyp was reduced with no differences in the content of free Hyp versus infected untreated mice. The administration of LEDZ by inhalation reduced content of profibrotic fractions of Hyp but increased galactose in PGs increased to the level of control mice. The intraperitoneal LEDZ administration decreased the protein content in PGs.

Key words: liposome-encapsulated dextrazide, tuberculous granulomatosis, extracellular matrix, spleen, glycosaminoglycans, collagens, matrix metalloproteinases/tissue inhibitors of metalloproteinases

For citations: Kim L. B., Putyatina A. N., Russkikh G. S. A reaction of the mouse spleen extracellular matrix to administration of liposome-encapsulated dextrazide in stabilization period of BCG-induced inflammation. Tuberculosis and Lung Diseases, 2022, Vol. 100, no. 10, P. 44-49 (In Russ.) http://doi.org/10.21292/2075-1230-2022-100-10-44-49

Для корреспонденции: Ким Лена Борисовна

E-mail: lenkim@centercem.ru

По данным Всемирной организации здравоохранения, туберкулез остается ведущей причиной смерти среди инфекционных болезней [11], что

Correspondence: Lena B. Kim Email: lenkim@centercem.ru

актуализирует создание новых эффективных противотуберкулезных средств, которые бы сочетали высокую антибактериальную активность, низкую

токсичность и отсутствие нежелательных эффектов, в частности фибротических осложнений.

В качестве перспективного средства можно рассматривать липосомальную форму декстразида $(\Pi\Phi\Pi3)$, конъюгата окисленного декстрана и изониазида, созданную ранее в ФИЦ ФТМ [4]. При введении ЛФДЗ обеспечивались адресная доставка препарата и его накопление в вакуолярно-лизосомальном аппарате макрофагов [5], что ослабляло выраженность нежелательных эффектов, проявляющуюся в снижении численности и размеров гранулем, локусов деструкции в паренхиме легких и печени животных, объема воспалительных инфильтратов вокруг них, количества волокнистой соединительной ткани [18]. Наряду с этим, отмечены изменения в системе регуляции метаболизма внеклеточного матрикса (ВКМ), связанные с соотношением матриксные металлопротеиназы (ММП)/тканевые ингибиторы металлопротеиназ $(TИМ\Pi)$, α_9 -макроглобулином и гиалуронидазами, что привело к снижению фиброза в органах, при этом выраженность эффектов зависела от способа доставки ЛФДЗ [18].

Иммунная система макроорганизма активно реагирует на инвазию микобактерий, ранее на модели хронического БЦЖ-индуцированного воспаления продемонстрировано наличие гранулем и фибротических проявлений не только в легких, но и в печени [17]. При этом изменения селезенки — самого крупного органа этой системы, мало изучены. Инфекционные агенты могут прямо или косвенно индуцировать ремоделирование ВКМ селезенки, приводя к дезорганизации микроархитектуры вторичных лимфоидных органов [15].

Известно, что на 30-е сут в селезенке у БЦЖ-инфицированных мышей формировались макрофогально-эпителиоидно-клеточные гранулемы [1]. На более поздних сроках оставалось небольшое число жизнеспособных микобактерий в селезенке, сохранялись признаки гранулематозного воспаления и спленомегалии у мышей [3]. В легких, печени и селезенке морских свинок, инфицированных вирулентным штаммом микобактерий Н37Rv, увеличивалось содержание коллагена и снижалось содержание гексозамина [13], что свидетельствует об интенсивной дезорганизации ВКМ и фиброзе не только в органах-мишенях, но и в селезенке.

Цель исследования: изучить реакции ВКМ селезенки при введении ЛФДЗ мышам в периоде стабилизации БЦЖ-индуцированного гранулематоза.

Материалы и методы

В исследовании использовали 2-месячных мышей-самцов линии BALB/с массой 18-22 г, находящихся в стандартных лабораторных условиях со свободным доступом к питьевой воде и корму, отобранных случайным образом и разделенных на 4 группы по 5 животных в каждой: 1-ю груп-

пу составили интактные мыши, необходимые для сравнения с опытными группами; животным 2, 3 и 4-й групп для воспроизведения модели БЦЖ-индуцированного гранулематозного воспаления однократно внутривенно (ретроорбитально) вводили вакцину БЦЖ из расчета 0,5 мг микробных тел в 0,2 мл 0,9%-ного раствора NaCl. Через 3 мес. после инфицирования в течение 2 мес. (2 раза в неделю) мышам 3-й и 4-й групп вводили раствор ЛФДЗ [липосомы размером 0,20-0,25 мкм, содержащие декстразид, конъюгат окисленного декстрана (40 кДа) и изониазид (14 мг/кг)]. Для мышей 3-й группы использовали ингаляционный способ введения, для чего раствор ЛФДЗ распыляли в камере через небулайзер Comp Air NE-C28-Ru (Omron, Китай) в течение 5 мин из расчета 50 мкл раствора на животное. Мышам 4-й группы ЛФДЗ вводили внутриперитонеально по 50 мкл раствора на животное. Через 2 мес. после последнего введения ЛФДЗ животных выводили из эксперимента под легким эфирным наркозом путем дислокации шейных позвонков. ЛФДЗ была получена в лаборатории биосовместимых наночастиц, наноматериалов и средств адресной доставки «Федерального исследовательского центра фундаментальной и трансляционной медицины».

Количество сульфатированных гликозаминогликанов (сГАГ) из выделенных протеогликанов (ПГ) ткани селезенки [19] определяли по содержанию сульфатных групп с красителем 1,9-диметилметиленовым голубым (Sigma-Aldrich, Германия) при $\lambda = 520$ нм [9]. Рутинными методами также определяли содержание белка [7], уроновых кислот [6], галактозы [16]. Для исследования обмена коллагенов в селезенке определяли содержание фракций гидроксипролина в супернатанте: свободный (свГОП), пептидно-связанный (пепГОП), белково-связанный (белГОП) [2].

Активность гиалуронидаз в супернатанте селезенки оценивали согласно методике [12]. Измерение оптической плотности проб проводили на спектрофотометре PD-303S (Apel, Япония).

Активность ММП определяли [8] с использованием субстрата Mca-Lys-Pro-Leu-Gly~Leu-Dpa-Ala-Arg-NH2 (FS-6, Sigma-Aldrich, США), который позволяет измерить суммарную активность (ММП-1, -2, -3, -7, -8, -9, -13, -14, адамализин-17) флуориметрическим методом [10]. Флюоресцирующие продукты реакции измеряли на спектрофлуориметре RF-5301 PC (Shimadzu, Япония), а в качестве стандарта использовали 1 мкМ 7-амино-4-метил-кумарин (Sigma-Aldrich, США).

Содержание ТИМП в супернатанте селезенки животных (ТИМП-1 и ТИМП-2, Invitrogen, США) определяли с помощью ELISA kit для мышей согласно инструкции. Оптическую плотность измеряли при $\lambda = 450$ нм с использованием микропланшетного ридера Stat Fax-2100 (Awareness Technology, США).

Активность и содержание ферментов пересчитывали на содержание белка [7].

Исследование одобрено комитетом по биомедицинской этике ФИЦ ФТМ и выполнено в соответствии с принципами гуманности, изложенными в Хельсинкской декларации и в «Правилах проведения работ с использованием экспериментальных животных» (приложение к приказу МЗ СССР № 755 от 12.08.1977 г.).

Для статистической обработки полученных результатов использовали пакет прикладных программ Statistica v. 10 (StatSoft Inc., США). В связи с тем что в большинстве случаев распределение признаков в выборках не подчинялось закону нормального распределения, использовали непараметрический метод, учитывали медиану (Ме), нижний и верхний квартили (Q_{25} ; Q_{75}). Для проверки статистической гипотезы разности значений для двух независимых переменных использовали U-критерий Манна — Уитни. Критическим уровнем значимости при проверке статистической гипотезы принимали p < 0.05.

Результаты исследования

В настоящем исследовании пытались раскрыть биохимические изменения, происходящие в ВКМ селезенки, самом крупном иммунном органе, при разных способах доставки ЛФДЗ на модели БЦЖ-индуцированного воспаления у мышей в периоде стабилизации, описанном ранее. Для этого периода характерно более низкое содержание ГОП и структурных компонентов ПГ в легких мышей по сравнению с данными 1 мес. (острый период) и особенно с данными 6 мес. (хронический период) БЦЖ-индуцированного воспаления.

У мышей 2-й группы было снижено содержание сГАГ, уроновых кислот, галактозы, белка в селезенке по сравнению с данными 1-й группы, что свидетельствует об изменении в структуре и содержании ПГ при инфицировании (табл.).

Относительно обмена коллагенов в селезенке отмечены увеличение содержания пепГОП, белГОП и тенденция к росту свГОП относительно их содержания в 1-й группе (табл.).

В ферментативной системе мышей 2, 3, 4-й групп через 3 мес. после БСЖ-инфицирования наблюдали повышение активности ММП при отсутствии различий в активности гиалуронидаз и содержании ТИМП-1 и ТИМП-2.

Таким образом, через 3 мес. после инфицирования в стадии стабилизации БЦЖ-индуцированного воспаления были отмечены изменения в структуре ПГ (уменьшение структурных компонентов ПГ), обмене коллагенов (увеличение содержания пепГОП, белГОП при активации ММП).

На модели туберкулеза, воспроизведенной на морских свинках с введением вирулентного штамма микобактерий H37Rv, наблюдали снижение в

печени, селезенке и легких содержания коллагена до 10 нед. и гексозаминов до 20 нед. после инфицирования и последующее увеличение этих компонентов до 44 нед. [13]. По мнению авторов, снижение этих показателей может быть связано с функцией ММП, которые вызывают разрушение определенных типов коллагена. По-видимому, стадии туберкулезного процесса могут зависеть от вида животных и вирулентности микобактерий, но постоянным является увеличение содержания коллагенов в органах в процессе развития туберкулезного гранулематоза.

После 2 мес. введения ЛФДЗ в 3-й и 4-й группах наблюдали повышение в селезенке содержания уроновых кислот (в 2,1 и 1,3 раза соответственно) и активности гиалуронидаз (в 2,5 и 3,6 раза соответственно), но снижение содержания белГОП относительно данных 2-й группы (табл.). При этом содержание уроновых кислот оставалось ниже, чем в 1-й группе, тогда как активность гиалуронидаз превысила значения 1-й группы. Дополнительно в 3-й группе отмечены активация ММП в 5,8 раза, увеличение содержания галактозы в 2,7 раза, снижение пепГОП в 1,6 раза, в 4-й группе — снижение содержания белка в ПГ в 1,5 раза по сравнению с данными 2-й группы.

Содержание галактозы, свГОП, пепГОП, белГОП в 3-й группе не отличалось от данных 1-й группы, тогда как в 4-й группе эти показатели (кроме белГОП) не отличались от данных 2-й группы. В обеих группах содержание сГАГ, ТИМП-1 и ТИМП-2 не отличалось от данных 2-й группы.

При сравнении способов введения ЛФДЗ обнаружены следующие различия: в 3-й группе были повышены содержание белка, галактозы в ПГ, активность ММП, но снижено содержание свГОП и пепГОП относительно 4-й группы.

Таким образом, способы введения ЛФДЗ мышам в периоде стабилизации БЦЖ-индуцированного воспаления определяют вклад отдельных компонентов ВКМ в реализацию антифибротического эффекта: при ингаляционном введении он достигается за счет ускорения обмена коллагенов, обусловленного активацией ММП и гиалуронидаз. При внутриперитонеальном введении ЛФДЗ активация гиалуронидаз оказалась недостаточной для нормализации обмена коллагенов и ПГ, о чем свидетельствует отсутствие различий в содержании пепГОП, свГОП, галактозы и активности ММП в 4-й группе в сравнении с данными 2-й группы.

Результаты исследования показали, что реакция ВКМ селезенки при обоих способах введения ЛФДЗ заключалась в изменении структуры ПГ и обмена коллагенов (увеличение уроновых кислот, снижение белГОП в 3-й и 4-й группе), в 3-й группе — увеличении уровня галактозы, в 4-й группе — снижении содержания белка относительно 2-й группы, связанном, видимо, с активацией гиалуронидаз.

При ингаляционном введении наблюдались снижение содержания профибротических фрак-

ций ГОП (пепГОП, белГОП) и сохранение содержания свГОП на уровне инфицированных мышей, обусловленное активацией ММП при этой форме доставки композиции. Это свидетельствует об антифибротическом эффекте ЛФДЗ, который достигается подавлением синтеза коллагенов и сохранением интенсивности деградации коллагенов на уровне БСЖ-инфицированных мышей, который был повышен относительно интактных животных (1-я группа). Ранее сообщалось, что антифибротический эффект был отмечен в легких мышей при ингаляционном введении ЛФДЗ в периоде стабилизации БЦЖ-индуцированного воспаления [14].

В связи со сказанным, для достижения антифибротического эффекта в селезенке в периоде стабилизации БЦЖ-гранулематоза предпочтительным является ингаляционный способ доставки ЛФДЗ.

Заключение

В настоящем исследовании изучали реакцию ВКМ селезенки на введение ЛФДЗ мышам, инфицированным *М. bovis* ВСС в составе вакцины. Полученные результаты позволяют допустить, что использование ЛФДЗ в периоде стабилизации БЦЖ-гранулематоза может предупредить выраженные фибротические изменения в органах, характерные для хронического периода гранулематозного воспаления.

В селезенке БЦЖ-инфицированных мышей в периоде стабилизации процесса отмечены изменения в структуре ПГ, которые проявились снижением содержания сГАГ, уроновых кислот, галактозы, белка, в обмене коллагенов — увеличением содержания пепГОП, белГОП и активности ММП. Содержание ТИМП-1, ТИМП-2 и активность гиалуронидаз не отличались от данных интактных животных.

Таблица. Влияние ЛФДЗ на ремоделирование ВКМ селезенки мышей в периоде стабилизации БЦЖ-индуцированного воспаления, Ме (\mathbf{Q}_{25} ; \mathbf{Q}_{75})

Table. Effect of LEDZ on remodeling of spleen ECM in mice during stabilization of BCG-induced inflammation, Me (Q_{ni}, Q_{ni})

Показатель	Интактные животные	БЦЖ	БЦЖ + ЛФДЗ ингаляционно	БЦЖ + ЛФДЗ внутриперитонеально	p
	1-я группа, <i>n</i> = 5	2-я группа, <i>n</i> = 5	3-я группа, <i>n</i> = 5	4-я группа, <i>n</i> = 5	
сГАГ, мкг/мг сухой ткани	1,22 (0,98; 1,46)	0,59 (0,42; 0,78)	0,60 (0,48; 0,86)	0,52 (0,44; 0,60)	$p_{1.2} = 0,003$ $p_{1.3} = 0,008$ $p_{1.4} = 0,001$
Белок, мкг/мг сухой ткани	2,91 (1,77; 3,44)	0,90 (0,80; 1,51)	0,81 (0,80; 0,91)	0,62 (0,60; 0,65)	$p_{1-2} = 0,007$ $p_{1-3} = 0,002$ $p_{1-4} = 0,001$ $p_{2-4} = 0,009$ $p_{3-4} = 0,0005$
Уроновые кислоты, мкг/мг сухой ткани	0,44 (0,40; 0,60)	0,10 (0,08; 0,10)	0,21 (0,13; 0,22)	0,13 (0,11; 0,18)	$\begin{aligned} p_{1.2} &= 0,0005 \\ p_{1.3} &= 0,0005 \\ p_{1.4} &= 0,0005 \\ p_{2.3} &= 0,006 \\ p_{2.4} &= 0,015 \end{aligned}$
Галактоза, мкг/мг сухой ткани	3,51 (2,15; 4,13)	0,94 (0,73; 1,27)	2,58 (1,63; 4,04)	1,30 (0,98; 1,88)	$\begin{aligned} p_{1\cdot2} &= 0,002 \\ p_{1\cdot4} &= 0,011 \\ p_{2\cdot3} &= 0,009 \\ p_{3\cdot4} &= 0,028 \end{aligned}$
свГОП, мкг/мг сухой ткани	6,27 (4,04; 9,24)	9,65 (6,12; 13,92)	7,52 (5,38; 9,60)	11,49 (8,77; 13,10)	$p_{1-4} = 0.028$ $p_{3-4} = 0.037$
пепГОП, мкг/мг сухой ткани	12,60 (11,45; 16,10)	25,34 (25,19; 26,54)	15,50 (12,55; 17,81)	24,70 (22,51; 26,26)	$p_{1-2} = 0,0005$ $p_{1-4} = 0,0005$ $p_{2-3} = 0,0005$ $p_{3-4} = 0,0005$
белГОП, мкг/мг сухой ткани	15,00 (11,57; 18,34)	24,08 (23,53; 25,31)	15,47 (12,00; 18,27)	17,68 (16,33; 22,07)	$p_{1.2} = 0,001$ $p_{2.3} = 0,001$ $p_{2.4} = 0,011$
Активность гиалуронидаз, нМ NAG/мин/мг белка	0,90 (0,66; 1,05)	0,94 (0,64; 1,34)	2,32 (1,26; 5,72)	3,35 (2,53; 5,31)	$p_{1-3} = 0.016$ $p_{1-4} = 0.002$ $p_{2-3} = 0.028$ $p_{2-4} = 0.004$
Активность ММП, мкМ МСА/мин/мг белка	0,93 (0,45; 3,71)	6,47 (5,02; 8,26)	37,76 (30,70; 47,45)	4,60 (2,65; 8,77)	$p_{1-2} = 0,003$ $p_{1-3} = 0,0005$ $p_{2-3} = 0,0005$ $p_{3-4} = 0,0005$
ТИМП-1, нг/мг белка	1,80 (1,36; 3,47)	2,52 (1,68; 3,31)	3,70 (2,99; 7,33)	4,14 (3,17; 5,10)	_
ТИМП-2, нг/мг белка	2,18 (1,07; 5,79)	3,07 (2,18; 4,94)	4,55 (2,80; 5,51)	3,78 (2,35; 9,24)	_

Примечание: ЛФДЗ — липосомальная форма декстразида, сГАГ — сульфатированные гликозаминогликаны, свГОП — свободный гидроксипролин, пепГОП — пептидно-связанный ГОП, белГОП — белково-связанный ГОП, ММП — матриксные металлопротеиназы, ТИМП — тканевые ингибиторы металлопротеиназ; при p > 0.05 между любыми двумя группами результат p в таблицу не вносился

Введение ЛФДЗ в этом периоде вызывало ряд изменений в ВКМ селезенки, не зависящих от способа доставки, а именно: повышение активности гиалуронидаз и содержания уроновых кислот в ПГ и снижение белГОП относительно данных инфицированных животных.

Отмечены изменения в ВКМ селезенки, связанные со способом введения ЛФДЗ. При ингаляционном введении ЛФДЗ снижалось содержание пепГОП,

белГОП до уровня интактных мышей, при этом содержание свГОП оставалось на уровне БЦЖ-инфицированных животных. Это отражает подавление синтеза коллагена до уровня у контрольных животных и сохранение интенсивности деградации коллагена. При внутриперитонеальном введении ЛФДЗ содержание свГОП, пепГОП и активность ММП не отличались от данных БЦЖ-инфицированных мышей, но при этом снижалось содержание белГОП.

Финансирование. Работа выполнена в рамках государственного задания № 122032300155-4 с использованием оборудования ЦКП «Современные оптические системы» ФИЦ ФТМ, а также ЦКП «Протеомный анализ», поддержанного финансированием Минобрнауки России (соглашение № 075-15-2021-691).

Funding. This research was carried out within the framework of the state task no. 122032300155-4 using the equipment of the Modern Optical Systems Center, as well as the Proteomic Analysis Center supported by funding of the Ministry of Education and Science of the Russian Federation (Agreement No. 075-15-2021-691).

Конфликт интересов. Авторы заявляют об отсутствии у них конфликта интересов. **Conflict of Interests.** The authors state that they have no conflict of interests.

ЛИТЕРАТУРА

- Михайлова Л. П., Макарова О. В. Сравнительная характеристика цитокинового профиля и морфологических проявлений гранулематозного воспаления у мышей BALB/c и C57BL/6 // Иммунология. – 2005. – № 2. – С. 95-98
- 2. Путятина А. Н., Русских Г. С., Ким Л. Б. Патент на изобретение № 2735375 от 30.10.2020 г. «Способ определения фракций гидроксипролина в биологическом материале» // Бюлл. 2020. № 31. 12 с.
- Шварц Я. Ш., Белогородцев С. Н., Филимонов П. Н., Чередниченко А. Г. Трансплантация аутологичных мезенхимальных стволовых клеток при экспериментальной микобактериальной инфекции: влияние условий кондиционирования // Туб. и болезни легких. – 2015. – № 12. – С. 31-36.
- 4. Шкурупий В. А., Троицкий А. В., Лузгина Н. Г., Потапова О. В. Патент на изобретение № 2372914 от 20.11.2009 «Фармацевтическая композиция для лечения туберкулеза» // Бюлл. 2009. № 32. 10 с.
- Arkhipov S. A., Shkurupy V. A., Troitsky A. V., Luzgina N. G., Ufimceva E. G., Zaikovskaja M. V., Iljine D. A., Akhramenko E. S., Gulyaeva E. P., Bistrova T. N. Phagocytic activity of macrophages against liposomes with conjugates of oxidized dextrans and isonicotinic acid hydrazide during modeling of phagocytosis disturbances in vitro // Bull. Exp. Biol. Med. – 2009. – Vol. 148, № 4. – P. 689-691. DOI: 10.1007/s10517-010-0795-5.
- Bitter T., Muir H. M. A modified uronic acid carbazole reaction // Anal. Biochem. – 1962. – Vol. 4, № 4. – P. 330-334. DOI: 10.1016/0003-2697(62)90095-7.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding // Anal. Biochem. – 1976. – Vol. 72, № 1-2. – P. 248-254. DOI: 10.1006/abio.1976.9999.
- de Grauw J. C., van de Lest C. H., van Weeren P. R. Inflammatory mediators and cartilage biomarkers in synovial fluid after a single inflammatory insult: a longitudinal experimental study // Arthritis Res. Ther. – 2009. – Vol. 11, № 2. – P. R35. DOI: 10.1186/ar2640.
- de Jong J. G., Wevers R. A., Laarakkers C., Poorthuis B. J. Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: a rapid screening procedure for mucopolysaccharidoses // Clin. Chem. – 1989. – Vol. 35, № 7. – P. 1472-1477. DOI: 10.1093/clinchem/35.7.1472.
- Fields G. B. Using fluorogenic peptide substrates to assay matrix metalloproteinases // Methods Mol. Biol. – 2010. – Vol. 622. – P. 393-433. DOI: 10.1007/978-1-60327-299-5_24.
- Global tuberculosis report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.
- Isman F. K., Kucur M., Baysal B., Ozkan F. Evaluation of serum hyaluronic acid level and hyaluronidase activity in acute and chronic hepatitis C // J. Int. Med. Res. – 2007. – Vol. 35. № 3. – P. 346-352. DOI: 10.1177/147323000703500309.

REFERENCES

- Mikhaylova L.P., Makarova O.V. Comparative characteristics of the cytokine profile and morphological manifestations of granulomatous inflammation in BALB/c and C57BL/6 mice. *Immunologiya*, 2005, no. 2, pp. 95-98. (In Russ.)
- Putyatina A.N., Russkikh G.S., Kim L.B. Patent no. 2735375 as of 30.10.2020. Sposob opredeleniya fraktsiy gidroksiprolina v biologicheskom materiale [The method of testing of hydroxyproline fractions in biological specimens]. *Bull.*, 2020, no. 31, 12 p.
- Shvarts Ya.Sh., Belogorodtsev S.N., Filimonov P.N., Cherednichenko A.G. Transplantation of autologous mesenchymal stem cells in the experimental mycobacterial infection: impact of conditioning. *Tuberculosis and Lung Diseases*, 2015, no. 12, pp. 31-36. (In Russ.)
- Shkurupiy V.A., Troitsky A.V., Luzgina N.G., Potapova O.V. Patent no. 2372914
 as of 20.11.2009. Farmatsevticheskaya kompozitsiya dlya lecheniya tuberkuleza
 [Pharmaceutical composition for the treatment of tuberculosis]. *Bull.*, 2009,
 no. 32, 10 p.
- Arkhipov S.A., Shkurupy V.A., Troitsky A.V., Luzgina N.G., Ufimceva E.G., Zaikovskaja M.V., Iljine D.A., Akhramenko E.S., Gulyaeva E.P., Bistrova T.N. Phagocytic activity of macrophages against liposomes with conjugates of oxidized dextrans and isonicotinic acid hydrazide during modeling of phagocytosis disturbances in vitro. *Bull. Exp. Biol. Med.*, 2009, vol. 148, no. 4, pp. 689-691. doi: 10.1007/s10517-010-0795-5.
- Bitter T., Muir H.M. A modified uronic acid carbazole reaction. *Anal. Biochem.*, 1962, vol. 4, no. 4, pp. 330-334. doi: 10.1016/0003-2697(62)90095-7.
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. *Anal. Biochem.*, 1976, vol. 72, no. 1-2, pp. 248-254. doi: 10.1006/abio.1976.9999.
- 8. de Grauw J.C., van de Lest C.H., van Weeren P.R. Inflammatory mediators and cartilage biomarkers in synovial fluid after a single inflammatory insult: a longitudinal experimental study. *Arthritis Res. Ther.*, 2009, vol. 11, no. 2, pp. R35. doi: 10.1186/ar2640.
- 9. de Jong J.G., Wevers R.A., Laarakkers C., Poorthuis B.J. Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: a rapid screening procedure for mucopolysaccharidoses. *Clin. Chem.*, 1989, vol. 35, no. 7, pp. 1472-1477. doi: 10.1093/clinchem/35.7.1472.
- Fields G.B. Using fluorogenic peptide substrates to assay matrix metalloproteinases. *Methods Mol. Biol.*, 2010, vol. 622, pp. 393-433. doi: 10.1007/978-1-60327-299-5_24.
- 11. Global tuberculosis report 2021. Geneva, World Health Organization, 2021, Licence: CC BY-NC-SA 3.0 IGO.
- Isman F.K., Kucur M., Baysal B., Ozkan F. Evaluation of serum hyaluronic acid level and hyaluronidase activity in acute and chronic hepatitis C. J. Int. Med. Res., 2007, vol. 35, no. 3, pp. 346-352. doi: 10.1177/147323000703500309.

Tuberculosis and Lung Diseases Vol. 100, No. 10, 2022

- Jayasankar K., Ramanathan V. D. Biochemical & histochemical changes relating to fibrosis following infection with *Mycobacterium tuberculosis* in the guinea pig // Indian J. Med. Res. – 1999. – Vol. 110. – P. 91-97.
- 14. Kim L. B., Putyatina A. N., Russkikh G. S., Shkurupy V. A. Antifibrotics effect of liposome-encapsulated composition of oxidized dextran and isonicotinic acid hydrazide in mice with BCG-induced granulomatosis depends on administration route // Bull. Exp. Biol. Med. 2020. Vol. 169, № 1. P. 71-76. DOI: 10.1007/s10517-020-04827-4.
- Morgado F. N., da Silva A. V. A., Porrozzi R. R. Infectious diseases and the lymphoid extracellular matrix remodeling: a focus on conduit system // Cells. – 2020. – Vol. 9, № 3. – P. 725. DOI: 10.3390/cells9030725.
- 16. Roe J. H. The determination of sugar in blood and spinal fluid with anthrone reagent // J. Biol. Chem. 1955. Vol. 212, N0 1. P. 335-343.
- Shkurupii V. A., Kim L. B., Potapova O. V., Sharkova T. V., Putyatina A. N., Nikonova I. K. Study of fibrotic complications and hydroxyproline content in mouse liver at different stages of generalized BCG-induced granulomatosis // Bull. Exp. Biol. Med. – 2014. – Vol. 157, № 4. – P. 466-469. DOI: 10.1007/s10517-014-2592-z.
- Shkurupy V. A., Cherdantseva L. A., Kovner A. V., Troitskii A. V., Bystrova T. N., Starostenko A. A. Structural changes in the lungs and liver of mice with experimental tuberculosis treated with liposome-encapsulated dextrazide // Bull. Exp. Biol. Med. – 2020. – Vol. 168, № 5. – P. 654-657. DOI: 10.1007/s10517-020-04773-1.
- Theocharis A. D., Karamanos N. K., Papageorgakopoulou N., Tsiganos C. P., Theocharis D. A. Isolation and characterization of matrix proteoglycans from human nasal cartilage. Compositional and structural comparison between normal and scoliotic tissues // Biochim. Biophys. Acta. – 2002. – Vol. 1569, № 1-3. – P. 117-126. DOI: 10.1016/s0304-4165(01)00242-2.

Jayasankar K., Ramanathan V.D. Biochemical & histochemical changes relating to fibrosis following infection with *Mycobacterium tuberculosis* in the guinea pig. *Indian J. Med. Res.*, 1999, vol. 110, pp. 91-97.

- Kim L.B., Putyatina A.N., Russkikh G.S., Shkurupy V.A. Antifibrotics effect
 of liposome-encapsulated composition of oxidized dextran and isonicotinic
 acid hydrazide in mice with BCG-induced granulomatosis depends on
 administration route. *Bull. Exp. Biol. Med.*, 2020, vol. 169, no. 1, pp. 71-76.
 doi: 10.1007/s10517-020-04827-4.
- Morgado F.N., da Silva A.V.A., Porrozzi R.R. Infectious diseases and the lymphoid extracellular matrix remodeling: a focus on conduit system. *Cells*, 2020, vol. 9, no. 3, pp. 725. doi: 10.3390/cells9030725.
- Roe J.H. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem., 1955, vol. 212, no. 1, pp. 335-343.
- Shkurupii V.A., Kim L.B., Potapova O.V., Sharkova T.V., Putyatina A.N., Nikonova I.K. Study of fibrotic complications and hydroxyproline content in mouse liver at different stages of generalized BCG-induced granulomatosis. *Bull. Exp. Biol. Med.*, 2014, vol. 157, no. 4, pp. 466-469. DOI: 10.1007/s10517-014-2592-z.
- Shkurupy V.A., Cherdantseva L.A., Kovner A.V., Troitskii A.V., Bystrova T.N., Starostenko A.A. Structural changes in the lungs and liver of mice with experimental tuberculosis treated with liposome-encapsulated dextrazide. *Bull. Exp. Biol. Med.*, 2020, vol. 168, no. 5, pp. 654-657. doi: 10.1007/s10517-020-04773-1.
- Theocharis A.D., Karamanos N.K., Papageorgakopoulou N., Tsiganos C.P., Theocharis D.A. Isolation and characterization of matrix proteoglycans from human nasal cartilage. Compositional and structural comparison between normal and scoliotic tissues. *Biochim. Biophys. Acta.*, 2002, vol. 1569, no. 1-3, pp. 117-126. doi: 10.1016/s0304-4165(01)00242-2.

ИНФОРМАЦИЯ ОБ АВТОРАХ:

ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины», 630117, г. Новосибирск, ул. Тимакова, д. 2. Тел.: +7 (383) 274-94-97.

Ким Лена Борисовна

доктор медицинских наук, главный научный сотрудник, руководитель группы биохимии соединительной ткани. E-mail: lenkim@centercem.ru, lbkim@frcftm.ru

Путятина Анна Николаевна

кандидат медицинских наук, научный сотрудник группы биохимии соединительной ткани. E-mail: putyatina@ngs.ru

Русских Галина Сергеевна

кандидат биологических наук, старший научный сотрудник лаборатории медицинской биотехнологии.

Тел.: + 7 (383) 335-97-35. E-mail: russkikh g@mail.ru INFORMATION ABOUT AUTHORS:

Federal Research Center of Fundamental and Translational Medicine, 2, Timakova St., Novosibirsk, 630117. Phone: +7 (383) 274-94-97.

Lena B. Kim

Doctor of Medical Sciences, Head Researcher, Head of Connective Tissue Biochemistry Group. Email: lenkim@centercem.ru, lbkim@frcftm.ru

Anna N. Putyatina

Candidate of Medical Sciences, Researcher of Connective Tissue Biochemistry Group. Email: putyatina@ngs.ru

Galina S. Russkikh

Candidate of Biological Sciences, Senior Researcher of Medical Biotechnological Laboratory. Phone: + 7 (383) 335-97-35. Email: russkikh_g@mail.ru

Поступила 18.06.2022

Submitted as of 18.06.2022