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Фармакогенетическое тестирование – наиболее перспективный инструмент персонализированной медицины, направленный 
на повышение эффективности и безопасности лечения, особенно у сложных коморбидных пациентов. Проведен анализ 
122 публикаций, посвященных теоретическим и прикладным аспектам применения фармакогенетического тестирования 
при лечении больных туберкулезом. Рассмотрена роль генетических полиморфизмов в ответе на лечение, представлены 
данные о белках, участвующих в процессах фармакокинетики и фармакодинамики основных противотуберкулезных пре-
паратов, и кодирующих эти белки генах. Проанализирован перечень наиболее значимых маркеров, связанных с риском 
нежелательных реакций при лечении лекарственно-чувствительного и лекарственно-устойчивого туберкулеза, охаракте-
ризованы перспективы их применения в клинической практике. В списке литературы отражены 56 ключевых публикаций, 
на которые имеются ссылки в тексте.
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Pharmacogenetic testing is the most promising tool in personalized medicine aimed at enhancing effectiveness and safety of treatment, 
especially in complicated cases with comorbidities. The review analyzes 122 publications devoted to theoretical and applied aspects 
of pharmacogenetic testing in the treatment of tuberculosis patients. It considers the role of genetic polymorphisms in the response 
to treatment, and presents data on proteins involved in pharmacokinetics and pharmacodynamics of main anti-tuberculosis drugs 
and the genes encoding these proteins. The review analyzes the list of the most significant markers associated with the risk of adverse 
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practice. The list of references contains 56 key publications cited in the text.
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Введение

Проблема повышения эффективности и безопас-
ности лечения туберкулеза является приоритетной 
в современной фтизиатрии. Показатель эффектив-
ности лечения туберкулеза в Российской Федера-
ции составил в 2024 г. всего 67%, по данным WHO 
Global TB Report [52]; нарастает частота нежела-
тельных реакций на противотуберкулезные пре-
параты [50]. Решение проблемы возможно в том 
числе за счет максимально эффективного приме-
нения существующих схем химиотерапии, в пер-
вую очередь, у особых групп пациентов (полико-
морбидных, «крайних» возрастов и т.п.) с высоким 
риском «нестандартного» ответа на лечение. Такие 
пациенты составляют не менее 50% современной 
популяции больных туберкулезом, требуют инди-
видуального подхода к выбору схем химиотерапии 
и доз препаратов. 

Эффективным инструментом персонализации 
применения лекарственных препаратов является 
фармакогенетика, изучающая роль генетических 
факторов в формировании индивидуального от-
вета на лекарство. Показано, что ответ на лечение 

и вероятность тяжелых нежелательных реакций 
приблизительно на 50% определяются индивиду-
альными генетическими особенностями пациента 
[13]. Выявление этих особенностей при фарма-
когенетическом тестировании является основой 
для «выстраивания» схемы лечения, наиболее 
эффективной и безопасной для пациента.  Фар-
макогенетическое тестирование (ФГТ) активно 
применяется в клинической практике при назна-
чении антикоагулянтов, психотропных и противо-
судорожных препаратов, опиоидных анальгетиков 
и других лекарств, число проводимых ежегодно 
фармакогенетических исследований неуклонно 
растет [8], функционируют международные кон-
сорциумы по фармакогенетике, обсуждается ее 
внедрение в национальные системы фармаконад-
зора [45]. Определена особая актуальность ФГТ 
при лечении туберкулеза (с учетом вариабельности 
ответа на стандартное лечение, значимой частоты 
тяжелых нежелательных реакций на препараты, 
перспектив длительной поликомпонентной тера-
пии); продолжают накапливаться научные данные, 
а также опыт применения ФГT во фтизиатрии. При 
этом фармакогенетика до настоящего времени не 

Рисунок 1. Процесс отбора публикаций для обзора (диаграмма PRISMA)
Fig. 1. Selection of publications for review (PRISMA diagram)
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внедрена в клиническую фтизиатрическую прак-
тику и остается terra incognita для большинства 
врачей. Целью нашего обзора являлась оценка 
современного уровня знаний о фармакогенетике 
противотуберкулезных препаратов с акцентом на 
прикладные возможности фармакогенетического 
тестирования при назначении разных режимов про-
тивотуберкулезной химиотерапии.

 Поиск информации проводили в базах дан-
ных Medline (PubMed), Google Scholar, medRvix, 
а также русскоязычных научных ресурсах (элек-
тронных библиотеках e-library.ru, КиберЛенин-
ка), по ключевым словам «pharmacogenetic» OR 
«pharmacogenomic» OR «pоlymorphism» OR «genetic 
variants» AND «tuberculosis treatment» (на русскоя-
зычных ресурсах – «фармакогенетика», «фармако-
геномика», «полиморфизм», «лечение туберкуле-
за»), а также по названиям противотуберкулезных 
препаратов совместно с терминами «фармакогене-
тика» и «полиморфизм». Для выявления допол-
нительных исследований проводили ручной поиск 
ссылок в обнаруженных статьях. Глубина поиска 
составляла 15 лет. Включали все исследования с на-
личием доступного полного текста или абстракта на 
английском или русском языках, кроме описания 
клинических случаев и комментариев к статьям. От-
дельно проводили поиск информации в базе между-
народного ресурса по клинической фармакогеноми-
ке Clinical Pharmacogenomics (https://www.clinpgx.
org/), объединившего ряд проектов по поддержке 
фармакогенетических исследований. Всего было 
обнаружено 1778 статей, из которых 122 вошли 
в обзор (рис. 1), в тексте данного обзора имеются 
ссылки на 56 ключевых публикаций. 

Генетические особенности и ответ на лечение 
туберкулеза

Генетические факторы, влияющие на индивиду-
альные особенности фармакологического ответа, 
представляют собой изменения в последовательно-
сти ДНК определенных генов (их «нуклеотидной 
записи») у конкретного человека. Эти точечные 
изменения (замена одного нуклеотида на другой, 
вставка или «выпадение» нуклеотида) называют од-
нонуклеотидными полиморфизмами (ОНП). ОНП 
могут обозначаться порядковым номером рядом 
с названием гена (например, NAT2*6), указанием 
нуклеотидов и их положения в гене (Т341С– замена 
тимидина на цитозин в положении 341) или уни-
кальным идентификационным номером (например, 
rs104823) [8]. Как известно, каждый ген в геноме че-
ловека имеет два варианта – аллеля, полученных от 
матери и отца. ОНП может быть обнаружен в обоих 
аллелях (гомозиготный генотип), только в одном 
из них (гетерозиготный генотип) или не обнаружи-
ваться вообще (так называемый «дикий» генотип), 
и каждый ген кодирует определенный белок. При 
наличии ОНП процесс считывания генетической 
информации меняется, что влечет за собой нару-

шение структуры, количества и/или активности 
синтезируемых белков, максимальное при гомози-
готном генотипе (ОНП в обоих аллелях).

Для фармакологического ответа на любой препа-
рат важными являются ОНП в двух типах генов [8]: 

а) отвечающих за процессы фармакокинетики ле-
карства – всасывания (Absorbtion), распределения 
(Distribution), метаболизма (Metabolism) и выве-
дения (Excretion) – так называемые ADME-гены 
[35], они кодируют синтез ферментов I и II фаз 
биотрансформации препаратов, мембранных бел-
ков-транспортеров; 

б) значимых для фармакодинамики – их продук-
ты являются основными или побочными мишенями 
для лекарства (ферменты, рецепторы, ионные кана-
лы), или участвуют в патогенетических процессах 
(так называемые не ADME-гены).

В табл. 1 представлены доступные данные о бел-
ках, участвующих в процессах фармакокинетики 
основных противотуберкулезных препаратов, коди-
рующих эти белки ADME-генах, а также значимых 
не-ADME генах, продуктами которых являются 
фармакодинамические мишени действия препара-
тов. 

Наличие определенных ОНП в этих генах, моду-
лируя функцию соответствующих белков, способно 
значительно влиять на параметры всасывания и вы-
ведения препарата, скорость метаболизма и риски 
образования /накопления токсичных метаболитов, 
ресурсы антиоксидантной защиты, клеточный им-
мунитет и чувствительность мишеней токсического 
действия. Соответственно, выявление этих ОНП 
позволит прогнозировать риски неэффективности 
препарата (и лечения в целом), нежелательных ре-
акций, а также определять индивидуальную потреб-
ность в коррекции дозы и режима приема препарата 
для минимизации этих рисков.

Выявление значимых ОНП и их аллельного 
распределения у конкретного пациента (фармако-
генетическое тестирование) проводится методом 
полимеразной цепной реакции (ПЦР) в разных 
вариантах, в большинстве случаев может быть 
выполнено в условиях ПЦР-лаборатории проти-
вотуберкулезного учреждения; источником гене-
тического материала обычно служит кровь или 
слюна. Все чаще применяют тесты с одномомент-
ным определением ОНП в нескольких генах [49], 
что позволяет более точно прогнозировать ответ на 
лечение. В некоторых случаях можно оценить тип 
метаболизма лекарств не по генетическим марке-
рам, а фенотипически – по соотношению неизме-
ненного лекарства и его метаболита в биологиче-
ских жидкостях (например, тип ацетилирования 
изониазида) [8]. Преимуществами генетического 
тестирования являются: возможность использова-
ния вне приема препарата, исключение временных 
вмешивающихся факторов в виде влияния курения, 
приема алкоголя, пищевых и лекарственных взаи-
модействий и др.; неизменность результата в тече-
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ние всей жизни (возможность учета при повторных 
курсах лечения) [8]. 

Следует учесть, что не каждый ОНП в соответ-
ствующих генах может оказывать значимое вли-
яние на фармакологический ответ и применяться 
в клинике в качестве фармакогенетического мар-
кера. По мнению Д.А. Сычева и соавторов [8], для 
этого необходимы: 1) доказанная значимая связь 
предполагаемого маркера с фармакологическим от-
ветом (эффективностью терапии, нежелательной 
реакцией); 2) встречаемость в популяции не менее 
1%; 3) высокие чувствительность и специфичность; 
4) четкий алгоритм действий (коррекции дозы, ре-
жима приема, замены препарата) при обнаружении 
маркера; 5) доказанные клинические и экономиче-
ские преимущества лечения на основе ФГТ с при-
менением маркера.

Процесс поиска и изучения фармакогенетиче-
ских маркеров для противотуберкулезных препа-

ратов продолжается, для каждого режима лечения 
определены свои маркеры с разным объемом дока-
зательной базы. 

Фармакогенетические маркеры при лечении 
лекарственно-чувствительного туберкулеза

Режим лечения лекарственно-чувствительно-
го туберкулеза (ЛЧ-ТБ) назначают большинству 
впервые выявленных пациентов, в интенсивной 
фазе он включает ежедневный прием четырех про-
тивотуберкулезных препаратов (изониазида, ри-
фампицина, пиразинамида, этамбутола). Ответ на 
лечение оценивают как результат действия всех 
четырех лекарств; нежелательные реакции (осо-
бенно гепатотоксические) также часто относят ко 
всей схеме лечения. В связи с этим и ряд наиболее 
значимых фармакогенетических маркеров оценен 
применительно ко всей схеме. Тем не менее, с уче-
том фармакокинетических особенностей препара-

Таблица 1. Белки-«участники» процессов фармакокинетики и гены фармакологического ответа  
на противотуберкулезные препараты
Table 1. Proteins involved in pharmacokinetics and genes involved in the pharmacological response to anti-tuberculosis drugs

Препарат Ферменты I и II фаз  
биотрансформации Белки-транспортеры Фармакокинетические гены 

(ADME-гены)
Фармакодинамические 

гены (не-ADME гены)

Изониазид N-ацетилтрансфераза 2, СYP2Е1, 
глутатион-S-трансферазы (μ и θ) ОАТ1, ОАТ3 NAT2, CYP2E1, GSTM, GSTT XPO1,MAFK,BACH1, NOS2, 

ATP7B, HLA-B

Рифампицин
Cериновые эстеразы,  

арилацетамидовая деацетилаза, 
глутатион-S-трансферазы

OATP1B1, OATP1B3, 
Р-gp

CES2, AADAC, SLCO1B1, 
ABCB1

Опосредованное влияние: 
VDR, PXR, NR1I2,CYP27B1, 

CYP1A2,  AGBL4

TNF

Пиразинамид Микросомальные деамидазы,  
ксантиноксидаза Не определены AOX1 Не определены

Этамбутол
Алкогольдегидрогеназа,  
альдегиддегидрогеназа, 

CYP1A2,CYP24A1,  
глюкуронозилтрансфераза

OCT, P-gp
ALDH1A1, CYP1A2, CYP24A1, 

SLC22A2,
OCT2, UGT2B7

MFN, OPA1,  
митохондриальные гены 
MT-ND1,MT-ND4, MT-ND6, 

SLC11A1 (NRAMP-1)

Левофлоксацин Глюкуронозилтрансфераза OATP1A1, Р-gp, ABCG2 ABCB1, ABCG2, SLCO1A2 HLA-B, VKORC1, KCNE1, 
KCNE2

Моксифлоксацин Глюкуронозилтрансфераза,  
сульфотрансфераза OATP1A2, ABCG2, Р-gp UGT1A1, UGT1A9,SLCO1B1, 

ABCG2,ABCB1 HLA-B, KCNE1, KCNE2

Амикацин Нет Нет Не определены MT-RNR1

Протионамид Флавин-содержащая  
монооксигеназа 2 SLC22 SLC22A2 Не определены

Аминосалициловая 
кислота N-ацетилтрансфераза 1 OAT, OCT NAT1 Не определены

Бедаквилин CYP3A4, CYP3A5, CYP2C8, 
CYP2C19 OAT 1,3  CYP3A4, CYP3A5

AGBL4 Не определены

Линезолид CYP3A5, глутатион-S-трансферазы Р-gp CYP3A5, ABCB1 MT-RNR1, ген 16S rRNA

Деламанид CYP3A4, CYP1A1, CYP2D6 Не определены CYP3A4 Не определены

Клофазимин CYP3A5 Р-gp, ABCG2 CYP3A, ABCB1, ABCG2 VKORC1

Примечание: ОАТ – транспортер органических анионов, ОАТP – пептидный транспортер органических анионов,  
ОСТ – транспортер органических катионов, P-gp – Р-гликопротеин, ABCG2 – АТФ-связывающий кассетный транспортер G2,  
SLC – транспортеры растворенных веществ.

Note: ОАТ – organic anion transporter, OATP – organic anion transporting polypeptides, OCT – organic cation transporter,  
P-gp – P-glycoprotein, ABCG2 – ATP-binding cassette transporter G2, SLC – solute carrier transporters.
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тов, исследований моно- и двойной терапии, in vitro 
и in vivo в табл. 2 представлены сведения о фармако-
генетических маркерах для каждого из препаратов, 
используемых при ЛЧ-ТБ. 

Наиболее известными из них являются полимор-
фные варианты гена N-ацетилтрансферазы2 (NАТ2), 
определяющие скорость ацетилирования изониа-
зида и ряда других ксенобиотиков. Варианты ак-
тивности фермента зависят от ОНП в структурной 
области гена и от их аллельного сочетания в геноти-
пе пациента. Выделяют ОНП, способствующие бы-
строй и медленной скорости ацетилирования. Ос-

новным аллелем немутантного («дикого») быстрого 
типа, который поддерживает активность фермен-
та, считают NAT2*4; кроме того, с быстрым ацети-
лированием связывают аллели NAT2*11 (С481Т, 
rs1799929), NAT2*12 (rs1208, А803G), NAT2*13 
(C282T, rs1041983). Напротив, NAT2*5 (Т341С, 
rs1801280), NAT2*6 (G590A, rs1799930), NAT2*7 
(G857A, rs1799931), NAT2*14 (G191A, rs1801279) 
являются «медленными». В зависимости от ком-
бинации аллелей скорость ацетилирования может 
быть быстрой (когда в генотипе присутствуют 
«дикий» и «быстрый» или два «быстрых» аллеля), 

Таблица 2. Генетические полиморфизмы, связанные с фармакологическим ответом на противотуберкулезные 
препараты первого ряда 
Table 2. Genetic polymorphisms associated with pharmacological response to first-line anti-tuberculosis drugs

Ген Полиморфизм Генотип Эффект Источник

Изониазид

NAT2

rs1801280,  
rs1799930,  
rs1799931,  
rs1801279

S3: *5/*5, *6/*6, *7/*7, *5/*6, *6/*7,  
и др.сочетания «медленных» аллелей Выше риск нежелательных реакций [5, 30,  

40, 54]

rs1799929,  
rs1208,  

rs1041983
S1: *11/*11, *12/*12, *13/*13, *11/*12, *12/*13, 

*11/*13, *4/*11, *4/*12, *4/*13, *4/*4 и др. Выше риск неудачи лечения [36]

rs1495741 АА Выше риск поражения печени [30]

CYP2E1
нет *1A/*1A («дикий») Выше риск поражения печени [47]

rs6413432 ТT Повышение AUC0-24 изониазида [48]

GSTM1 null null/null Выше риск поражения печени [18]

CYP2B6 rs3745274 ТТ Низкий риск поражения печени [21]

Рифампицин

AADAC rs1803155
GG, GA Снижение AUC0-24 [44]

АА Повышение Cmax, риск гепатита [44]

CES2 rs3759994 GG Снижение Cmax, AUC [44]

SCLCO1B1 rs11045819 АС Снижение Cmax, AUC [44]

rs 4149056 ТТ Снижение Cmax, AUC [25]

АВСВ1 rs 1045642 ТТ, ТС Выше риск поражения печени [1]

rs3842 AA Снижение Cmax, AUC [44]

NR1/2 rs7958375 GA, AA Снижение AUC0-6 [28]

CUX2 rs7958375 GG Выше риск поражения печени [38]

AGBL4 rs320003 АА Выше риск поражения печени [38]

Пиразинамид

NR1/2 rs7643645 Выше риск поражения печени [26]

Этамбутол

CYP1A2 rs2069514 GG, GA Снижение биодоступности [46]

ALDH1A1 rs7852860 СС, CA Выше риск поражения печени [37]

UGT2B7 rs7662029 AG Низкий риск токсических реакций [17]

OPA1 rs143319805 Нет данных Выше риск зрительной нейропатии [55]
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промежуточной (при сочетании «быстрого» и «мед-
ленного» аллелей) и медленным (при сочетании 
только «медленных» аллелей, например, NAT2*5 
и NAT2*6). Кроме того, выделяют группу ультрамед-
ленных ацетиляторов, с генотипом NAT2*6/*6 или 
NAT2*6/*7 [31]. Частота встречаемости отдельных 
аллелей и фенотипов ацетилирования в популяции 
варьирует в зависимости от этнической и расовой 
принадлежности (среди монголоидов доминирует 
быстрый тип ацетилирования, из медленных ал-
лелей встречается NAT2*7, у европеоидов доми-
нирующим медленным аллелем является NAT2*5, 
доля медленных ацетиляторов 40-60%) [8, 42]. ФГТ 
типа ацетилирования чаще включает определение 
6 основных ОНП NAT2 (*5, *6, *7, *11, *12, *13). 
Кроме того, по данным полногеномного секвени-
рования выявлен маркерный полиморфизм гена 
NAT2 – rs1495741 (A/G); наличие генотипа АА по 
этому полиморфизму с 99,5% чувствительностью 
и 95,9% специфичностью позволяет прогнозировать 
медленный фенотип ацетилирования [30].

У быстрых ацетиляторов изониазид метаболизи-
руется быстрее, концентрация его в крови падает 
ниже терапевтических значений уже через 0,9-1,8 
часа, что при стандартном режиме дозирования ве-
дет к снижению антимикобактериального эффек-
та [8]. По данным метаанализа [36], быстрый тип 
ацетилирования связан с риском неэффективности 
терапии и развитием лекарственной устойчивости 
(отношение шансов (ОШ) 2,02, 95% доверительный 
интервал (ДИ) 1,52-2,69). Напротив, у медленных 
ацетиляторов происходит накопление изониази-
да и его токсичных метаболитов. Это способствует 
достижению антимикобактериального эффекта, но 
ассоциируется с высоким риском нежелательных 
реакций, прежде всего лекарственного поражения 
печени (ЛПП), по сравнению с быстрыми и про-
межуточными ацетиляторами (ОШ=3,15, 95% ДИ 
2,58-3,84, по данным метаанализа M. Zhang, et al. 
2018) [54]. Степень этого риска варьирует в зависи-
мости от этнических особенностей популяции (ОШ 
до 5,92 у жителей Ближнего Востока [31], в россий-
ских работах ОШ 2,69-8,57 [3, 5]) и от того, какие 
«медленные» аллели сочетаются в генотипе (мак-
симальна для генотипов *6A/*6A, *6A/*7B, *6/*7, 

*5B/*7B, *7B/*7B и *5/*7 [41]). Следует отметить, 
что в связи с особенностями метаболизма изониа-
зида быстрое ацетилирование также способствует 
образованию гепатотоксичных метаболитов, одна-
ко более высокий риск ЛПП подтвержден только 
в отдельных группах больных туберкулезом с «бы-
стрым» полиморфизмом NAT2*13 (у ВИЧ-позитив-
ных лиц и детей) [15, 24]. 

Определение генотипа NAT2 дает возможность 
не только прогнозировать риск неудачи лечения 
и нежелательных реакций, но и снизить его за счет 
коррекции дозы и режима приема изониазида. Авто-
ры двух японских и одного польского исследований 
[8, 10, 16], сопоставившие фармакогенетические 

и фармакокинетические данные, рекомендовали 
у медленных ацетиляторов прием изониазида в дозе 
2,5 мг/кг, у промежуточных – 5 мг/кг один раз в сут-
ки, у быстрых – 10 мг/кг в два приема. Аналогич-
ное исследование было проведено Н.М. Красновой 
с учетом российских рекомендаций по назначению 
препарата: для медленных ацетиляторов обоснована 
доза изониазида 5 мг/кг (300 мг) один раз в день, 
для промежуточных 5-7,5 мг/кг один раз в день, для 
быстрых – 10 мг/кг, разделенная на два приема [6]. 
Определение типа ацетилирования может прово-
диться до начала терапии (оптимальный вариант) 
или до ее возобновления после развившейся неже-
лательной реакции (ЛПП). Определение генотипа 
ацетилирования для коррекции дозы изониазида – 
единственный метод ФГТ с подтвержденной фарма-
коэкономической эффективностью во фтизиатрии, 
согласно данным N.E. Rens, et al., 2020 [39]. 

В качестве дополнительных фармакогенетиче-
ских маркеров для прогнозирования риска ЛПП 
на фоне приема изониазида (и в целом режима 
химиотерапии лекарственно-чувствительного ту-
беркулеза) описаны полиморфизм гена CYP2E1 
(«дикий» генотип *1А/*1А, аллельный вариант 

*5B – т.н. Rsal), а также гомозиготная делеция ге-
нов глутатионтрансфераз μ и θ (GSTM1, GSTT1) 
[7, 10]. Так, по данным метаанализов и других ра-
бот, показан более высокий риск ЛПП у пациентов 
с «диким» генотипом CYP2E1 *1А/*1А, максималь-
ный у медленных ацетиляторов [45, 47]. Аллель *1А 
встречается почти у 100% европейцев, что позволяет 
сомневаться в целесообразности широкого тестиро-
вания больных туберкулезом. Данные о влиянии 
полиморфизма глутатионтрансфераз противоре-
чивы: часть авторов подтверждает, другие опровер-
гают взаимосвязь этих полиморфизмов с риском 
гепатотоксичности [7, 8, 9, 10, 30]; как правило, они 
определяются дополнительно к типу ацетилиро-
вания, играя второстепенную роль для прогноза. 
Большинство исследований опровергает значимую 
роль делеции GSTT1, в то время как в отношении 
GSTМ1 продолжается накопление данных [8, 32, 
53]. Получены сведения о высоком риске ЛПП при 
полиморфизмах в генах белков антиоксидантной 
и антитоксической защиты, регуляторов иммунного 
ответа и апоптоза (MnSOD2, NOS2, BACH1, MAFK, 
XPO1, STAT3), с уровнем доказательности 3-4, по 
данным базы ClinPGx [20]. В отличие от перечис-
ленных маркеров, полиморфизм rs3745274 в гене 
цитохрома CYP2B6 (CYP2B6*6, G516T) считают 
протективным – при его наличии у пациента сни-
жен риск развития ЛПП на фоне приема изониазида 
[21]. 

Перспективные фармакогенетические маркеры 
для рифампицина представлены полиморфизма-
ми генов двух ключевых ферментов – карбокси-
эстеразы 2 (CES2) и арилацетамидовой деацети-
лазы (AADAC), транспортеров – Р-гликопротеина 
(АВСВ1) и транспортера органических анионов 
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(SLCO1B1), а также регуляторов транскрипции 
и  активных лекарственных взаимодействий пре-
парата. Так, полиморфизмы AADAC rs1803155 (ге-
нотип GG), CES2 (A2263G), SCLCO1B1 rs11045819 
(генотип AC), rs 4149056 (генотип ТТ), ядерного 
фактора транскрипции NR1/2 rs7958375 позволяют 
прогнозировать более низкие сывороточные кон-
центрации [25, 28] и риск недостаточной эффектив-
ности рифампицина; напротив, AADAC rs1803155 
(генотип АА), АВСВ1 rs1045642 (генотипы СС 
и ТС) и другие – более высокую концентрацию ри-
фампицина/рифапентина и риск ЛПП [1, 20, 44]. 
Алгоритмы коррекции доз препарата в зависимости 
от этих полиморфизмов не разработаны.

Ключевыми для метаболизма пиразинамида яв-
ляются ферменты деамидаза и ксантиноксидаза; 
в настоящее время не обнаружено связи их поли-
морфизма с фармакокинетикой и фармакодина-
микой препарата. Основным «эффектом интереса» 
для фармакогенетики пиразинамида остается риск 
ЛПП; показано, что он в 1,65 раза ниже у носителей 
полиморфизма rs7643645 в гене NR1/2 ядерного 
прегнан-рецептора Х (PXR), играющего важную 
роль в регуляции транскрипции ферментов лекар-
ственного метаболизма и координации лекарствен-
ных взаимодействий [26].

Для этамбутола описан ряд фармакогенетиче-
ских маркеров, применимых для индивидуализации 
дозы и оценки риска нежелательных реакций. Так, 
полиморфизм G2159A в гене цитохрома CYP1A2 
(генотипы GG и GA) ассоциируется со снижени-
ем биодоступности препарата и требует увеличе-
ния дозы минимум до 30 мг/кг [46] под контролем 
проявлений токсичности. Риск редкого для этого 
препарата гепатотоксического действия повышен 
у носителей полиморфизма rs7852860 в гене аль-
дегиддегидрогеназы (ALDH1A1) [37]; риск офталь-
мотоксичности связан с полиморфизмами в генах 
регуляторов синтеза митохондриальных белков 
(нарушение работы митохондрий – ключевое зве-
но в патогенезе этамбутол-индуцированной зри-
тельной нейропатии) [17]. В качестве «защитного» 
маркера, связанного с низким риском токсичности 
этамбутола, может быть использован полимор-
физм rs7662029 в гене глюкуронозилтрансферазы 
(UGT2B7) [17]. 

Таким образом, в отношении лечения ЛЧ-ТБ 
накоплен значительный объем информации о пер-
спективных фармакогенетических маркерах; эта 
информация соответствует высоким уровням до-
казательности (1В, 2А) и применяется в клиниче-
ской практике только для полиморфизмов NAT2, 
остальные маркеры требуют дальнейшего изучения 
и клинической апробации. Кроме NAT2, для персо-
нализации этого режима лечения по результатам 
обзора применимы полиморфизмы в генах GSTM, 
AADAC, SCLCO1B1, CYP1A2. Лечение ЛЧ-ТБ яв-
ляется наиболее важной мишенью для разработки 
персонализированных стратегий с учетом целевой 

популяции – впервые выявленных пациентов, для 
их надежного и безопасного излечения, минимиза-
ции риска лекарственной устойчивости и рециди-
вов процесса. 

Фармакогенетические маркеры при лечении 
лекарственно-устойчивого туберкулеза

Лечение туберкулеза с множественной, пре- 
и широкой лекарственной устойчивостью (МЛУ, 
пре-ШЛУ и ШЛУ) возбудителя предполагает 
назначение большего числа препаратов с вари-
абельным антимикобактериальным эффектом, 
не всегда известными фармакокинетическими 
и  фармакодинамическими мишенями, разны-
ми возможностями коррекции дозы и широким 
спектром нежелательных реакций. Возможности 
ФГТ в этой сфере несомненно востребованы, но 
только начинают развиваться; для многих препа-
ратов маркеры неизвестны или изучены только 
в пилотных работах. В современных режимах лече-
ния МЛУ-туберкулеза особенно важной является 
возможность назначения и непрерывного приема 
препаратов группы А – бедаквилина, линезолида 
и фторхинолонов; именно они – основа персона-
лизированных стратегий. 

Для бедаквилина наиболее значимым и изу-
ченным является полиморфизм генов цитохрома 
CYP3A4 и CYP3A5. Обнаружены варианты, связан-
ные с медленным клиренсом препарата и большей 
частотой нежелательных реакций (CYP3A4*1В или 
rs2740574, CYP3A4*1G или rs2242480 [2]), риском 
неудачи лечения (CYP3A5*3 или rs776746, генотипы 
GG и AG [4, 11]); ранее показано, что полиморфизм 
CYP3A5*3 связан с низким клиренсом препарата 
[23]. На клиренс бедаквилина, его сывороточную 
концентрацию и риск гепатотоксичности влияет 
полиморфизм rs319952 в гене фермента карбок-
сипептидазы (AGBL4) [56]; роль этого фермента 
в метаболизме препарата и возможности коррекции 
дозы на основе ФГТ не изучены.

Основной проблемой линезолида является дозо-
зависимая нейро- и гематотоксичность; для выде-
ления групп риска и управления дозой препарата 
применимо тестирование аллельных вариантов 
CYP3A5*1 (при генотипах AA и GА отмечены субте-
рапевтические концентрации препарата и необходи-
мо наращивать дозы [19]) и полиморфизма С3435Т 
гена ABCB1 (rs2032582, генотип ТТ) как предикто-
ра нейротоксических реакций [4, 14]. Кроме того, 
выявлена прямая взаимосвязь периферической 
полинейропатии и цитопении с полиморфизмами 
митохондриальных генов: MT-RNR1 (гаплогруппа 
U) и MT-RNR2 (m.3010G>A) [22]. 

Для фторхинолонов (лево- и моксифлокса-
цина) применимо определение полиморфиз-
мов в генах глюкуронилтрансферазы (UGT1A1, 
UGT1A9) и трех типов транспортеров: OATP1B1 
(ген SLCO1B1), Р-гликопротеина (ген ABCB1) 
и АТФ-связанного кассетного транспортера G2 (ген 
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ABCG2). В частности, выявлено снижение клиренса 
и повышение площади под кривой моксифлокса-
цина на 20-25% у африканцев с полиморфизмом 
UGT1A1 *1/*36 [34], на 46% – у носителей геноти-
па AG rs4149015 SLCO1B1 [51]. В других работах 
показана роль полиморфизмов rs1045642 (генотип 
AG), rs 2032582 (генотип АA), rs 1128503 (генотип 
AG) в гене Р-гликопротеина (ABCB1), rs2231142 
(генотип GT) в гене ABCG2 для выделения группы 
риска судорог на фоне приема левофлоксацина [20]; 
полиморфизма rs1805128 (аллель Т) в гене калие-
вых каналов KCNE1 как маркера риска удлинения 
интервала QTc [29]; полиморфизмов HLA-B *57:01 
и HLA-DQA1*03:01, как маркеров риска лекарствен-
ного поражения печени на фоне приема фторхино-
лонов [12]. Также выделены полиморфизмы гена 
HLA-B, связанные с риском тяжелых аллергических 
реакций (*15:02 – синдрома Стивенса-Джонсона, 

*13:01, *13:02 – других генерализованных кожных 
реакций) на левофлоксацин [27].

Из препаратов группы В данные о возможных 
фармакогенетических маркерах имеются для клофа-
зимина (полиморфизмы генов VKORC1 rs9923231, 
RFX4 rs76345012, CNTN5 rs75285763 связаны с низ-
ким клиренсом препарата, по данным D.W. Haas, et 
al. [23]). Для циклосерина, а также протионамида, 
деламанида, претоманида фармакогенетические 
маркеры не разработаны. Для пара-аминосалици-
ловой кислоты ключевым является полиморфизм 
N-ацетилтрансферазы 1; у носителей «медленных» 
аллелей NAT1*14 и NAT1*3 выше сывороточная 
концентрация препарата и риск токсических эф-
фектов, однако четкие алгоритмы коррекции дозы 
отсутствуют [43]. 

Сохраняет актуальность проблема ототоксич-
ности аминогликозидов; для этих препаратов роль 
ADME-генов минимальна, зато определен и приме-
няется фармакогенетический маркер токсического 
действия – полиморфизм rs267606617 G (m.1555A> 
G) митохондриального гена MT-RNR1. У носителей 
этого полиморфизма доказан высокий риск необра-
тимой потери слуха (уровень доказательности 1А) 
и, соответственно, ограничена возможность приме-
нения инъекционных препаратов [33].

Как и для ЛЧ-ТБ, многие из перечисленных 
маркеров могут быть отнесены не к конкретному 
препарату, а ко всему режиму химиотерапии. Не 
всегда роль выявляемого маркера можно логически 
связать с известной информацией о метаболизме 
применяемых препаратов. Так, несколько неожи-
данной стала связь «медленных» генотипов NAT2 
rs1799931*АА и rs1799931*АG с риском неудачи 
лечения МЛУ-туберкулеза, выявленная в работе 
М.М. Юнусбаевой и соавторов [11]. 

В целом, современные возможности ФГТ при 
лечении лекарственно-устойчивого туберкулеза 
основаны на определении полиморфизмов в генах 
CYP3A4, CYP3A5, ABCB1, SLCO1B1, ABCG2. 

Заключение

В настоящее время растет объем исследований, 
направленных на поиск и клиническое тестирова-
ние фармакогенетических маркеров для противо-
туберкулезных препаратов, что свидетельствует 
о востребованности фармакогенетики как инстру-
мента в лечении туберкулеза. Возможности этого 
инструмента включают выбор оптимальной дозы 
препарата, а также стартовую оценку риска зна-
чимых нежелательных реакций и недостаточной 
эффективности терапии. Эта оценка поможет не на-
значить лекарство с высоким риском опасных реак-
ций, вовремя принять превентивные меры; выбрать 
оптимальную длительность режима и стратегию 
лечения. Такой подход направлен на повышение 
эффективности и безопасности терапии, экономию 
ресурсов и сохранение жизни пациентов.

В настоящее время фармакогенетические мар-
керы определены почти для всех ключевых проти-
вотуберкулезных препаратов; наиболее известной 
и доступной моделью фармакогенетического тести-
рования (с готовыми алгоритмами коррекции дозы) 
является определение генотипа N-ацетилтрансфе-
разы 2, которое с минимальными затратами может 
быть внедрено в большинстве противотуберкулез-
ных учреждений с ПЦР-лабораторией. На этапе 
невысокой доступности и сложностей интеграции 
ФГТ в клиническую работу фтизиатра может об-
суждаться тактика тестирования «по требованию» – 
у сложных, коморбидных больных с трудностями 
подбора дозы и высоким риском непереносимости 
лечения, с последующим расширением объема те-
стирования вплоть до популяционных исследова-
ний.

Анализ публикаций позволяет определить на-
правления дальнейшей научной работы и приклад-
ного применения фармакогенетики во фтизиатрии. 
Ближайшие перспективы включают тестирование 
уже известных и поиск новых маркеров в россий-
ской популяции, создание доступных диагностиче-
ских наборов для определения наиболее значимых 
полиморфизмов, в том числе митохондриальной 
ДНК (важных для линезолида и аминогликозидов), 
разработку алгоритмов клинических решений в за-
висимости от фармакогенетических данных, с при-
менением современных информационных техно-
логий, внедрением в клинические рекомендации 
и реальную практику.
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