© КОЛЛЕКТИВ АВТОРОВ, 2016

УДК 616-002.5-07

DOI 10.21292/2075-1230-2017-95-1-11-17

АКТИВНОСТЬ ТУБЕРКУЛЕЗНОГО ПРОЦЕССА ПРИ ВЫЯВЛЕНИИ КАЛЬЦИНАТОВ ВО ВНУТРИГРУДНЫХ ЛИМФАТИЧЕСКИХ УЗЛАХ И ЛЕГКИХ У ДЕТЕЙ

A. B. ME3EHIĻĒBA¹, T E. TЮЛЬКОВА¹, Ю. П. ЧУГАЕВ¹², H. Γ . KAMAĒBA¹², U. A. ДОЛМАТОВA³

¹ФГБУ «Уральский НИИ фтизиопульмонологии» МЗ РФ, г. Екатеринбург

²ГБОУ ВПО «Уральский государственный медицинский университет» МЗ РФ, г. Екатеринбург

³ГБУЗ СО «Областной противотуберкулезный диспансер», г. Екатеринбург

Внедрение новых методов обследования детей во фтизиатрии привело к увеличению IIIA группы диспансерного учета. Цель: поиск критериев активности туберкулезного процесса при выявлении кальцинатов внутригрудных лимфатических узлов (ВГЛУ) у детей. Наблюдали за детьми, возраст которых был от полутора месяцев до 17 лет, проходивших обследование в противотуберкулезных диспансерах гг. Екатеринбурга и Тюмени. В 1А подгруппе (n=145) детей отмечалось дальнейшее увеличение и/или уплотнение кальцинатов, у 27 детей — кальцинаты остались без динамики (1Б подгруппа). Во $2A_1$ — у 184 пациентов рентгенологические изменения были динамичны, у 31 человека зафиксировано появление кальцинатов в ВГЛУ ($2A_2$ подгруппа), у 13 человек отсутствовала какая-либо динамика рентгенологических изменений, что расценено как метатуберкулезные (фиброзные) изменения (2Б подгруппа). Выделили два критерия, свидетельствующие об отсутствии признаков активности туберкулеза: давность инфицирования более 4 лет и стабильный уровень α 2-фракции в белковом спектре. Эти показатели могут претендовать на роль достоверных критериев при отсутствии клинических проявлений синдрома интоксикации, обнаружении кальцинатов с помощью лучевых методов и отсутствии очага инфекции в окружении ребенка.

Ключевые слова: туберкулез, дети, активность, протеинограмма, первичное инфицирование.

ACTIVITY OF TUBERCULOSIS WHEN CALCIFICATION IS DETECTED IN THE CHEST LYMPH NODES AND LUNGS OF CHILDREN

A. V MEZENTSEVA¹, T E. TYULKOVA¹, YU. P. CHUGAEV^{1,2}, N. G. KAMAEVA^{1,2}, I. A. DOLMATOVA³

¹Ural Phthisiopulmonology Research Institute, Yekaterinburg, Russia

²Ural State Medical University, Yekaterinburg, Russia

³Regionl TB Dispensary, Yekaterinburg, Russia

Introduction of new examination techniques to tuberculosis control in children resulted in the increase of Group IIIA of the dispensary follow-up. **Goal:** to define criteria of tuberculosis disease activity when calcification is detected in the chest lymph nodes of children. Follow-up included children in the age from 1,5 months to 17 years old examined in TB dispensaries of Yekaterinburg and Tyumen. 1A Subgroup (n = 145) of children demonstrated further increase and/or induration of calcification and in 27 children calcification did not change (1B Subgroup). In Subgroup $2A_1 - 184$ patients had changes in the X-ray manifestations, 31 persons demonstrated calcification in chest lymph nodes (Subgroup $2A_2$), 13 persons demonstrated no changes in X-ray manifestations which was considered as metatuberculous (fibrous) changes (2B Group). Two criteria witnessing of the absence of active tuberculosis disease were identified: infection with tuberculosis more than 4 years ago and stable level of α 2-fraction in the protein profile. These indicators can serve as true criteria when no clinical signs of intoxication are observed and calcification is detected by X-ray, while the child has not been exposed to tuberculosis.

Key words: tuberculosis, children, activity, protein fractions, primary infection.

Совершенствование алгоритма выявления и диагностики туберкулеза у детей предусматривает применение, наряду с пробой Манту, современного высокоспецифичного метода иммунодиагностики – пробы с диаскинтестом и высокоинформативного метода лучевой диагностики – компьютерно-томографического исследования органов грудной клетки (ОГК) [4, 5, 17]. Это обстоятельство позволяет выявлять мелкие кальцинаты во внутригрудных лимфатических узлах (ВГЛУ) и легочной ткани. В связи с этим происходит увеличение контингентов детей, наблюдаемых детскими фтизиатрами в III группе диспансерного учета. С одной стороны, образование мелких кальцинатов может быть объяснено с позиции патогенеза первичной туберкулезной инфекции, когда в ближайший от момента первичного инфицирования

временной период наблюдается бактериемия, то есть гематогенное распространение микобактерий туберкулеза (МБТ), получившее название облигатной бактериемии [2, 3, 7, 18], с другой – образование кальцинатов в ВГЛУ может быть исходом малых форм туберкулеза, то есть рассматриваться как остаточные посттуберкулезные изменения (ОПТИ) [6, 7]. По данным М. В. Шиловой, в 2001 г. на 1 случай выявления неактивных форм туберкулеза обнаруживалось 5 случаев активного процесса, в 2013 г. это соотношение сократилось до 1:2,1 [20]. Таким образом, среди контингентов, находящихся на диспансерном учете у детского фтизиатра, увеличилось число лиц с неактивными посттуберкулезными изменениями, причем в основном за счет контингентов IIIA группы. Доля детей, взятых на диспансерный учет в IIIA группу,

среди всех вновь выявленных больных туберкулезом составила 69,7% в 2014 г. против 28,3% в 2008 г. [20]. Следует отметить, что это происходит на фоне снижения общей и детской заболеваемости туберкулезом. В связи с вышеуказанным возникает необходимость разработки и внедрения в практику детского фтизиатра комплекса критериев, позволяющих объективизировать определение активности минимальных туберкулезных изменений органов дыхания у детей.

Цель: поиск критериев определения активности туберкулезного процесса у детей с кальцинатами ВГЛУ.

Материалы и методы

В ходе исследования проведен про- и ретроспективный анализ историй болезни 379 детей в возрасте от полутора месяцев до 17 лет, находящихся на лечении в противотуберкулезных диспансерах (ГБУЗ СО «ПТД», г. Екатеринбург, ГБУЗ ТО «ОПТД», г. Тюмень). Группы сформированы по факту обнаружения кальцинатов при рентгенологическом обследовании. В первую группу объединены пациенты VI и IV групп, у которых при рентгенологическом обследовании выявлены кальцинаты в ВГЛУ и/или легких (n = 183), во вторую – пациенты с синдромом очагового затемнения и/или патологией корня легкого без признаков кальцинации (n = 196). За период наблюдения в течение 2-4 мес. проанализирована динамика рентгенологически выявленных ранее изменений. На основании этого выделены подгруппы. В первой группе у 145 детей отмечалось дальнейшее увеличение и/или уплотнение кальцинатов (1А подгруппа), у 27 детей – рентгенологическая динамика отсутствовала: кальцинаты остались в прежнем объеме и новых дополнительных теней не появилось (1Б подгруппа). Во второй группе у 184 пациентов регистрировалась динамика рассасывания или прогрессирования выявленных рентгенологических изменений (2А,), у 31 человека зафиксировано появление кальцинатов в ВГЛУ (2А, подгруппа), у 13 человек отсутствовала какая-либо динамика рентгенологических изменений, что расценено как метатуберкулезные (фиброзные) изменения (2Б подгруппа).

Диагноз туберкулеза выставлен на основании жалоб пациента, данных объективного обследования, динамики результатов теста с аллергеном туберкулезным рекомбинантным и пробы Манту с 2 ТЕ, установленных данных о раннем периоде первичной туберкулезной инфекции, информации об источнике инфекции и длительности контакта, наличия обнаруженных изменений на рентгенограмме и/или компьютерной томограмме.

Активность иммунной системы косвенно характеризовал спектр белков крови, определяемый электрофоретическим способом. Электрофорез белков сыворотки (протеинограмма) доступен лаборатори-

ям любого уровня и не требует больших финансовых ресурсов, не имеет возрастных особенностей в интерпретации показателей, за исключением уровня γ -глобулинов, отражающего продукцию иммуноглобулинов, которая несколько снижена у детей первых лет жизни. Уровень α 1-, α 2-, β -фракций глобулинов, их соотношение между собой не зависят от возраста. Протеинограмма проведена пациентам 1A подгруппы (n = 25), 1Б подгруппы (n = 18), 2A₁ (n = 39), 2A₂ (n = 9) и 2Б подгруппы (n = 9).

Статистические исследования проводили с помощью прикладных программ Microsoft Excel 97, Биостатистика для Windows. В работе использовали два вида данных: дискретные (типа да/нет) и интервальные (количественные показатели). Описание количественных показателей выполнено с помощью среднего арифметического значения $(M) \pm \text{стандартное отклонение } (\delta)$, которое давало представление о разнородности группы. Чем выше стандартное отклонение (δ), тем более разнородна изучаемая группа. Различия интервальных переменных в независимых выборках анализировали с помощью двухвыборочного t-критерия Стьюдента с поправкой на неравенство дисперсий (наличие разнородности внутри группы) по Levene. При проведении множественных сравнений использовали поправку Бонферрони. Статистически значимыми считали различия при p < 0.05. Величину различий оценивали путем расчета разности средних и определения 95%-ного доверительного интервала (ДИ). Если ДИ этой разности не содержал внутри себя 0, то гипотеза о равенстве средних отвергалась. Сравнение дискретных признаков выполнено с помощью таблиц сопряженности с применением критерия χ^2 .

Результаты исследования

Согласно данным о патогенезе туберкулезной инфекции, особенно ее первичных форм, для возникновения заболевания необходим контакт с больным [2, 13]. Несмотря на это утверждение, факт выявления контакта с больным туберкулезом отсутствовал у 33,8-14,8% пациентов в разных подгруппах, но достоверной разницы в степени представления этого признака в изучаемых подгруппах не получили (табл. 1). Проанализировали информацию о степени родства при установлении контакта у пациентов исследуемых подгрупп.

По данным табл. 1, контакт с родителями или близкими родственниками выявлен у большего числа обследуемых в изучаемых подгруппах (45,2-83,3% случаев). Обращало внимание, что у детей 1Б и 2Б подгрупп (с отсутствием динамики выявленных рентгенологических изменений) частота встречаемости контакта несколько выше, чем в подгруппах с динамично изменяющимися рентгенологическими признаками (1A, 2A₁, 2A₂). При сравнении описываемого признака в подгруп-

Таблица 1. Источники инфекции у пациентов различных групп

Table 1. Sources of infection in the patients from various groups

Источник инфекции	1A (n = 145)		1Б (<i>n</i> = 27)		2A ₁ (n = 153)		2A ₂ (n = 31)		2Б (n = 12)	
	n	%	n	%	N	%	n	%	n	%
Контакт не выявлен	49	33,8	4	14,8	42	27,4	7	22,5	4	33,3
Родственники	75	51,7	17	62,9	92	60,2	14	45,2	10	83,3
Соседи/друзья	7	4,8	1	3,7	12	7,8	4	12,9	1	8,3
Множественный контакт	14	9,6	5	18,5	17	11,1	7	22,6	1	8,3
Очаг смерти	12	8.3	6	22,2	17	11,1	6	19,4	3	25

пах первой (p=0,686) и второй (p=0,546) групп достоверных отличий не установлено. Соседи или друзья становились источниками инфекции реже, чем родственники. Достоверное преобладание факта установления контакта с родственниками зафиксировано у пациентов в 1A (p=0,001), 1Б (p=0,002) и $2A_1$ (p=0,002) подгруппах, тогда как в других подгруппах ($p2A_2=0,069$ и p2b=0,051) отличий не получено. Очаги туберкулезной инфекции, где больные, контактирующие с детьми, умирали от туберкулеза, регистрировались в изучаемых подгруппах в равном количестве случаев (p>0,05).

Кроме самого факта установления контакта с больным туберкулезом, имеет значение его длительность [2, 13]. Отмечено, что в большинстве случаев дети находились в непосредственной близости с больным более одного года, тогда как временной промежуток длительностью менее года регистрировался в единичных случаях. Продолжительность контакта более 1 года составила: в 1А подгруппе — 74 пациента из 96 (p = 0,000), в 1Б — 21 из 23 (p = 0,002), во 2А₁ — 95 из 111 (p = 0,000), 2А₂ — 20 из 24 (p = 0,013), 2Б — 8 из 8 человек (p = 0,035).

Как правило, контакт с больным туберкулезом знаменуется инфицированием человека МБТ. С этого момента берет начало ранний период первичной туберкулезной инфекции (РППТИ), проявляющийся виражом туберкулиновых проб, гиперергической реакцией на туберкулин или монотонным увеличением туберкулиновой чувствительности [2, 13]. Различий между проявлениями (видами) РППТИ у детей изучаемых групп и подгрупп не выявлено. Выявлены достоверные различия в числе лет с момента установления факта первичного инфицирования МБТ (РППТИ) до момента выявления рентгенологических изменений в изучаемых подгруппах) (табл. 2).

По данным табл. 2 видно, что внутри первой и второй групп интервал времени от момента первичного инфицирования до выявления кальцинатов увеличен у пациентов 1Б (p=0,002) и 2Б (p=0,038) подгрупп. Указанный временной промежуток длительностью более 4 лет в 1А подгруппе выявлен у 38 из 122 человек, имевших данные о туберкулинодиагностике, в 1Б — у 12 из 23 пациентов. Относительный риск обнаружить факт установления первичного инфицирования более 4 лет в 1Б подгруппе выше, чем в 1А (95%-ный ДИ 0,724-1,021). Обнаружение давности инфицирования (РППТИ) более 4 лет зарегистрировано во $2A_1$ у 37 из 99 человек (имевших данные о туберкулиновых пробах), во $2A_2$ — у 5 из 26, во $2\overline{b}$ — у 4 из 8 человек. Исходя

Таблица 2. Оценка времени, прошедшего с момента установления факта раннего периода первичной туберкулезной инфекции

Table 2. Evaluation of time period from the moment when the early period of primary tuberculous infection was identified

OTOTILOTINICONIA FONOCATORIA FORMINA DI ISONOMA			1-я г	1-я группа		2-я группа				
Стат	Статистические показатели парных выборок			15	2A,	25	2A ₂	2Б		
Среднее			2,6	4,0	2,9	4,5	2,7	4,5		
N (численность выборки)			145	27	153	12	31	12		
Стан	Стандартное отклонение			2,3	2,6	1,7	2,7	1,7		
Стан	Стандартная ошибка среднего			0,44	0,21	0,49	0,48	0,49		
ИZ	среднее стандартное отклонение		1,4		-1,6		-1,8			
) ŠE			0,2		-0,9		-1,0			
e ba	стандартная ошибка среднего		0,27		-0,28		-0,01			
Парные	OFOV	нижняя граница	-2,28		-3,1		-3,49			
a			0,51		-0,09		-0,1			
t-кри	t-критерий			-3,133		-2,09		-2,14		
Степ	Степень свободы		170		163		41			
Знач	Значимость t-критерия (2-сторонняя)			0,002		0,038		0,038		

из этого, относительный риск обнаружить давность инфицирования сроком более 4 лет выше у пациентов 2Б подгруппы (95%-ный ДИ 0,894-1,162). Таким образом, у пациентов со стабильными рентгенологическими изменениями (1Б и 2Б подгруппы) отмечается увеличение интервала времени (более 4 лет), прошедшего с момента установления факта первичного инфицирования до выявления кальцинатов. Такое утверждение может свидетельствовать о снижении риска обнаружить активный специфический процесс у детей, имевших любые проявления РППТИ ≥ 4 лет назад.

На реализацию свойств инфекционного агента, т. е. на возможность развития туберкулеза, особое

влияние оказывает состояние иммунного ответа [1, 3, 6, 8, 11, 14], оценить который можно косвенным образом по размеру папулы после введения аллергена туберкулезного рекомбинантного (диаскинтест) и 2 ТЕ ППД-Л при пробе Манту. Обе пробы определяют количество сенсибилизированных Т-лимфоцитов к антигенам МБТ, но не наличие самого возбудителя [10, 15]. На момент обнаружения рентгенологических изменений у детей изучаемых групп и подгрупп достоверных различий в размерах папулы при проведении пробы с диаскинтестом не выявлено (табл. 3).

Аналогичные результаты получили при сравнении инфильтрата на введение туберкулина 2 TE

Таблица 3. Размеры инфильтрата при введении аллергена туберкулезного рекомбинантного

Table 3. Size of infiltration when administering tuberculosis recombinant allergen

CTOTHOTHHOOMING BOLGGOTO BY FIRM IN DURONGY			1-яг	1-я группа		2-я группа				
Стат	Статистические показатели парных выборок			15	2A ₁	25	2A ₂	25		
Сред	Среднее			13,9	12,6	15,5	14,6	15,5		
N (численность выборки)			145	27	153	12	31	12		
Стан	Стандартное отклонение			5,7	5,3	2,9	3,8	2,9		
Стан	Стандартная ошибка среднего			1,09	0,34	0,83	0,68	0,83		
Σ	среднее стандартное отклонение		2,0		-2,9		-2,0			
ЭНОС			0,8		2,4		-3,4			
	стандартная ошибка среднего		0,69		-0,49		-0,15			
Парные	0F2/ × F1/	нижняя граница	-0,08		-5,962		-3,35			
Па	95%-ный ДИ разности средних верхняя граница		4,08		0,16		1,55			
t-кри	t-критерий			1,897		-1,87		-0,73		
Степ	Степень свободы			170		163		41		
Знач	Значимость t-критерия (2-сторонняя)			0,06		0,063		0,464		

ППД-Л в подгруппах внутри изучаемых групп (табл. 4). Таким образом, у детей со стабильными рентгенологическими изменениями (1Б и 2Б) размер папулы сходен с таковым у тех, кто имеет динамически изменяющуюся рентгенологическую картину (1A, $2A_1$, $2A_2$ подгрупп).

Итогом взаимодействия микро- и макроорганизмов является формирование гранулемы, являющейся «третичным» иммунным органом [12] и способным определять клинические проявления туберкулезной инфекции. В свою очередь, состав гранулем во многом зависит от состояния МБТ.

Таблица 4. Размеры инфильтрата при введении туберкулина 2 ТЕ

0			1-я группа		2-я группа				
Стат	Статистические показатели парных выборок			15	2A ₁	25	2A ₂	25	
Среднее			13,4	14,3	10,0	12,0	13,5	12,0	
N (численность выборки)			145	27	31	12	153	12	
Стандартное отклонение			3,7	3,8	5,8	2,4	4,3	2,4	
Стандартная ошибка среднего			0,3	0,7	1,04	0,69	0,34	0,69	
<u> Е</u> среднее		-0,9		-2,0		1,5			
3HO	среднее стандартное отклонение стандартная ошибка среднего		0,1		-3,4 -0,35		-1,9 -0,35		
Парные	050/	нижняя граница	-2,43		-5,13		-0,98		
95%-ный ДИ разности средних верхняя граница		0,63		1,51		3,98			
t-критерий		-1,156		-1,15		1,19			
Степень свободы		170		41		163			
Значимость t-критерия (2-сторонняя)		0,249		0,257		0,235			

У пациентов с остаточными посттуберкулезными изменениями МБТ имеют самые разнообразные морфологические формы, которые определяют естественный патоморфоз противотуберкулезных реакций, протекающих с чертами неспецифических [7]. В свою очередь, степень неспецифических изменений зависит от степени изменения персистирующего в организме возбудителя, снижа-

ющего вирулентность, сохраняющего собственную специфическую патогенность и приобретающего способность вызвать неспецифические тканевые реакции у здоровых лиц — носителей посттуберкулезных изменений [8]. В связи с этим для оценки воспалительной реакции [1, 5, 8, 19] использовали спектр белков крови по данным электрофореграммы (табл. 5).

Таблица 5. Спектр белков крови по данным электрофореграммы ($M\pm\delta$)

Table 5. Profile of blood proteins as per data of electrophoretogram (M $\pm\delta$)

Группы	n	альбумины	α1-фракция	α2-фракция	β-фракция	ү -фракция
1A	25	59,1 ± 3,9	3,0 ± 1,4	9,4 ± 1,3	10,8 ± 1,4	18 ± 3,1
15	18	58,8 ± 6,0	3,2 ± 0,8	8,5 ± 1,5*	11,2 ± 2,0	18,1 ± 4,9
2A ₁	39	55,7 ± 6,2	3,0 ± 0,7#	10,0 ± 1,9	12,3 ± 2,5	19,1 ± 4,7
2A ₂	14	58,6 ± 6,3	3,5 ± 0,5	10,8 ± 2,6	11,0 ± 0,8##	17,0 ± 5,9
2Б	9	56,5 ± 6,4	3,9 ± 0,6	8,9 ± 2	13,2 ± 2,9	17,2 ± 2,3
Значимость	р	p > 0,5	# <i>р</i> 2А ₂ ,2Б = 0,01	*p1A = 0,042	## <i>p</i> 2A ₁ ,2Б = 0,001	p > 0,5

Примечание: *, # и ## – различия достоверны.

По данным табл. 5 установлено, что уровень альбумина не отличался между подгруппами внутри изучаемых групп (p > 0.05). При изучении величины α1-фракции у пациентов в подгруппах первой группы различий не зафиксировано (p > 0.05), тогда как во второй группе отличия отмечены. Обращало внимание снижение уровня а1 у пациентов 2А, подгруппы при сравнении с данными $2A_{2}$ (p = 0.01) и 2B (p = 0.001) подгрупп. Известно, что α1 фракция – это совокупность белков острой фазы (а1-липопротеид, а1-гликопротеид и а1-антитрипсина), которые тесно взаимодействуют между собой [5, 19]. Ряд авторов [5, 19] высказывали мнение о предрасположенности пациентов к формированию эмфиземы в молодом возрасте при снижении показателя а1-глобулинов. Кроме того, низкие концентрации α1-антитрипсина регистрируются при повышенном катаболизме и при хронических заболеваниях легких [19], что и обнаружено у пациентов 2А, подгруппы. Увеличение содержания фракции а2-глобулинов связано с миграцией в α2-зону α2-макроглобулина и гаптоглобина, что наиболее характерно для туберкулеза [5]. Иммунорегуляторное воздействие этих белков на антигены возбудителя (МБТ) осуществляется под влиянием цитокинов [фактора некроза опухоли-а (TNF-α), интерлейкина-1 (IL-1β), интерлейкина-6 (IL-6)], которые играют ключевую роль в патогенезе туберкулезной инфекции [9, 10, 14, 16]. В данном исследовании увеличение уровня α2-глобулинов зарегистрировано у пациентов 1А, 2А, 2А, подгрупп относительно аналогичного показателя у пациентов 1Б подгруппы (95%-ный ДИ 0,03-1,76). Факт отсутствия изменения уровня α2-глобулинов у больных 1Б подгруппы расценили как признак,

свидетельствующий об отсутствии у них активных воспалительных реакций. Изучая показатель β-фракции глобулинов, косвенно судили о содержании в крови трансферрина, β-липопротеида и С3-, С4-компонентов комплемента [10, 19], которые способствовали активации системы компонента комплемента в иммунологических реакциях гиперчувствительности III типа и не играли значимой роли в иммунопатогенезе туберкулезной инфекции. Этот факт объяснял отсутствие каких-либо значимых отличий в содержании в-фракции глобулинов у пациентов изучаемых подгрупп. В нашем исследовании увеличение концентрации у-фракции глобулинов регистрировалось у пациентов 2А, подгруппы, но без достоверных отличий с пациентами других подгрупп. По данным литературы, для хронического процесса, к которым относится туберкулезное воспаление, характерно увеличение α2- и γ-фракции [5, 19].

Заключение

Оценить степень активности очагов высокой плотности (кальцинатов), обнаруженных лучевыми методами (КТ ОГК), по данным кожной гиперчувствительности замедленного типа (проба Манту с 2 ТЕ ППД-Л и диаскинтестом) при отсутствии или слабой выраженности системной воспалительной реакции не представляется возможным. У половины пациентов с отсутствием клинико-рентгенологической картины в течение наблюдения отмечалось увеличение периода, прошедшего с момента первичного инфицирования до выявления кальцинатов при отсутствии до 4 лет и более изменений уровня а2-фракции в белковом

спектре протеинограммы. Выделено два критерия, свидетельствующих об отсутствии признаков активности туберкулеза: давность инфицирования (РППТИ) более 4 лет и неизмененный уровень а2-фракции. Имеются основания полагать, что в совокупности с клинико-рентгенологическими (от-

сутствие клинических проявлений синдрома интоксикации, обнаружение кальцинатов лучевыми методами) и эпидемиологическими данными (отсутствие очага инфекции) эти критерии являются факторами, определяющими активность туберкулезного воспаления.

ЛИТЕРАТУРА

- Абдуллаев Р. Г., Каминская Г., Комиссарова О. Г. Сдвиги в системе гемостаза – компонент синдрома системного воспалительного ответа при туберкулезе легких // Врач. – 2012. – № 2. – С. 24.
- 2. Аксёнова В. А. Туберкулез у детей и подростков: учебное пособие. М.: ГЭОТАР-Медиа, 2007. 272 с.
- Бутыльченко О. В. Клинико-иммунологические критерии туберкулезного инфицирования у детей и подростков // Вестн. Здоровье и образование в XXI в. – 2010. – № 11.
- Губкина М. Ф. Методы выявления и клинико-рентгенологическая характеристика абациллярного туберкулеза у детей старшего возраста // Пробл. туб. – 2002. – № 10. – С. 16-19.
- Долгов В. В., Шевченко О. П. Лабораторная диагностика нарушений обмена белков. Пособие для врачей, второе издание, переработанное. – М., 2002. – 67 с.
- Дорошенкова А. Е. Анорина Е. Е., Ставицкая Н. В., Тхакушинова Н. Х. Информативность иммунологических показателей как индикаторов активности латентной туберкулезной инфекции у детей // Кубан. науч. мед. вестник. – 2009. – № 9. – С. 44-47.
- 7. Земскова З. С., Дорожкова И. Р. Скрыто протекающая туберкулезная инфекция. М.: Москва, 1984. 15 л. ил., 224 с.
- Зоркальцева Е. Ю. Гемограмма и показатели специфического иммунитета у больных туберкулезом детей // Бюллетень ВСНЦ СО РАМН. – 2005. – № 1
- Иммунология и аллергология (цветной атлас): учебное пособие для студентов медицинских вузов / под ред. А. А. Воробьева, А. С. Быкова, А. В. Караулова. – М.: Практическая медицина, 2006. – 288 с., ил.
- 10. Иммунология. М.: издательский дом «МАГИСТР ПРЕСС», 2013. 448 с.
- Корецкая Н. М., Загорулько О. В., Логунова Н. А., Наркевич А. Н. Значение пробы Манту с 2 ТЕ ППД-Л и диаскинтеста в формировании группы риска рецидива туберкулеза у детей со спонтанным излечением специфического процесса // Педиатрия. Журнал им. Г. Н. Сперанского. – 2016. – Т. 95, № 2. – С. 72-77.
- 12. Маянский А. Н. Туберкулез (микробиологические и иммунопатогенетические аспекты) // Иммунология. 2001. № 2. С. 53.
- 13. Перельман М. И., Богадельникова И. В. Фтизиатрия: учебник: с компакт-диском 4-е изд., перераб. и доп. + CD. М.: ГЭОТАР Медиа, 2013. 453 с.
- 14. Стасько Е. Ю., Хасаншин Г. С. Анализ применения кожной пробы с препаратом аллергена туберкулезного рекомбинантного как скринингового метода обследования на туберкулез детей старше 7 лет в Пензенской области в 2015 г. // Туб. и болезни легких. – 2016. – № 3. – С. 52-56.
- Тюлькова Т. Е., Чугаев Ю. П., Кашуба Э. А. Иммунологические особенности туберкулезной инфекции на разных этапах ее развития. – Тюмень: ООО «Сити-пресс», 2008. – 60 с.
- Федеральные клинические рекомендации по диагностике и лечению латентной туберкулезной инфекции у детей. – М.: РООИ «Здоровье человека», 2015. – 36 с.
- 17. Фрейдлин И. С., Тотолян А. А. Клетки иммунной системы. СПб.: Наука, 2001. 390 с.
- 18. Чистович А. Н. Патологическая анатомия и патогенез туберкулеза. Л., 1973. 175 с.
- Шевченко О. П., Долгов В. В., Олефиренко Г. А. Электрофорез в клинической лаборатории. І. Белки сыворотки крови. – Реафарм, 2006. – 112 с.
- 20. Шилова М. В. Туберкулез в России в 2012-2013 гг. Москва, 2014. 244 с.

REFERENCES

- Abdullaev R.G., Kaminskaya G., Komissarova O.G. Changes in hemostasis system – components of system inflammatory response syndrome in pulmonary tuberculosis. Vrach, 2012, no. 2, pp. 24. (In Russ.)
- Aksenova V.A. Tuberkulez u detei i podrostkov. Uchebnoye posobiye. [Tuberculosis in children and adolescents. Manual]. Moscow, GEOTAR-Media Publ., 2007, 272 p.
- Butylchenko O.V. Clinical and immunological criteria of tuberculous infection in children and adolescents. Vestn. Zdorovye i Obrazovaniye v XXI v., 2010, no. 11. (In Russ.)
- Gubkina M.F. Detection techniques and clinical X-ray characteristics of abacillary tuberculosis in children of the older age. *Probl. Tub.*, 2002, no. 10, pp. 16-19. (In Russ.)
- Dolgov V.V., Shevchenko O.P. Laboratornaya diagnostika narusheniy obmena belkov. Posobie dlya vrachey, vtoroe izdanie, pererabotannoe. [Laboratory diagnostics of protein exchange disorders. Doctors' manual, second revised edition]. Moscow, 2002, 67 p.
- Doroshenkova A.E., Anorina E.E., Stavitskaya N.V., Tkhakushinova N.Kh. Informativeness of immunological rates as indicators of latent tuberculous infection in children. Kuban. Nauch. Med. Vestn., 2009, no. 9, pp. 44-47. (In Russ.)
- Zemskova Z.S., Dorozhkova I.R. Sktryto protekayuschaya tuberkuleznaya infektsia. [Latent tuberculous infection]. Moscow, Moscow, 1984, 224 p.
- 8. Zorkaltseva E.Yu. Haemogram and specific immunity rates in children suffering from tuberculosis. *Bulleten' VSNTS SO RAMN*, 2005, no. 1. (In Russ.)
- Immunologiya i allergologiya (tsvetnoy atlas): uchebnoe posobie dlya studentov meditsinskikh vuzov. [Immunology and allergology (color atlas): Manual for medical students]. Ed. by A.A. Vorobiev, A.S. Bykov, A.V. Karaulov. Moscow, Prakticheskaya Meditsina Publ., 2006, 288 p.
- 10. Immunologiya, Moscow, Izdtelsky Dom MAGISTR PRESS Publ., 2013, 448 p.
- 11. Koretskaya N.M., Zagorulko O.V., Logunova N.A., Narkevich A.N. The value of Mantoux test with 2 TU PPD-L and diaskintest in the formation of the risk group of tuberculosis relapse in children with spontaneous cure of the disease. *Pediatriya, Journal im. G.N. Speransky* 2016, vol. 95, no. 2, pp. 72-77. (In Russ.)
- Mayansky A.N. Tuberculosis (microbiological and immune-pathogenic aspects). *Immunologiya*, 2001, no. 2, pp. 53. (In Russ.)
- Perelman M.I., Bogadelnokova I.V. Ftiziatriya: uchebnik. [Phthisiatry: Manual].
 2nd Edition, reviewed and supplemented, Moscow, GEOTAR-Media Publ.,
 2013, 453 p.
- Stasko E.Yu., Khasanshin G.S. Analysis of using the skin test with tuberculous recombinant allergen as a screening technique for children above 7 years old in Penza Region in 2015. *Tub. i Bolezni Legkikh*, 2016, no. 3, pp. 52-56. (In Russ.)
- 15. Tyulkova T.E., Chugaev Yu.P., Kashuba E.A. *Immunologicheskie osobennosti tuberkuleznoy infektsii na raznykh etapakh ee razvitiya*. [Immunological specific features of tuberculous infection at the various stages of its development]. Tyumen, OOO Siti-Press Publ., 2008, 60 p.
- 16. Federal'nye klinicheskie rekomendatsii po diagnostike i lecheniyu latentnoy tuberkuleznoy infektsii u detey. [Federal clinical recommendations on diagnostics and treatment of latent tuberculous infection in children]. Moscow, ROOI Zdorovye Cheloveka Publ., 2015, 36 p.
- Freydlin I.S., Totolyan A.A. Kletki immunnoy sistemy. [Cells of immune system].
 St. Petersburg, Nauka Publ., 2001, 390 p.
- Chistovich A.N. Patologicheskaya anatomiya i patogenez tuberkuleza.
 [Pathologic anatomy and pathogenesis of tuberculosis]. Leningrad, 1973, 175 p.
- Shevchenko O.P., Dolgov V.V., Olefirenko G.A. Elektroforez v klinicheskoy laboratorii. I Belki syvorotki krovi. [Electrophoresis in clinical laboratory. I Proteins of blood serum]. Reafarm Publ., 2006, 112 p.
- Shilova M.V. *Tuberkulez v Rossii v 2012-2013 gg.* [Tuberculosis in Russia in 2012-2013]. Moscow, 2014, 244 p.

для корреспонденции:

ФГБУ «Уральский НИИ фтизиопульмонологии» МЗ РФ, 620039, г. Екатеринбург, ул. 22-го партсъезда, д. 50. Тел.: 8 (343) 333-44-67.

Мезенцева Алеся Валентиновна

аспирант.

E-mail: lacaron@yandex.ru

Тюлькова Татьяна Евгеньевна

доктор медицинских наук, ведущий научный сотрудник. E-mail: tulkova@urninf.ru

ФГБОУ ВПО «Уральский государственный медицинский университет» МЗ РФ, 620028, г. Екатеринбург, ул. Репина, д. 3. Тел.: 8 (343) 333-44-59.

Чугаев Юрий Петрович

доктор медицинских наук, профессор кафедры фтизиопульмонологии с курсом торакальной хирургии. E-mail: urninf@urninf.ru

Камаева Наталья Геннадьевна

кандидат медицинских наук, доцент, профессор кафедры фтизиопульмонологии с курсом торакальной хирургии. E-mail: kamayeva@gmail.com

Долматова Ирина Александровна

ГБУЗ CO «Областной противотуберкулезный диспансер», врач. 620010, г. Екатеринбург, ул. Славянская, д. 45.

Поступила 10.07.2016

FOR CORRESPONDENCE:

Ural Phthisiopulmonology Research Institute, 50, XXII Parts'ezda St., Yekaterinburg, 620039. Phone: +7 (343) 333-44-67.

Alesya V. Mezentseva

Postgraduate Student. E-mail: lacaron@yandex.ru

Tatyana E. Tyulkova

Doctor of Medical Sciences, Leading Researcher. E-mail: tulkova@urninf.ru

Ural State Medical University, 3, Repina St., Yekaterinburg, 620028. Phone: +7 (343) 333-44-59.

Yury P. Chugaev

Doctor of Medical Sciences, Professor of Phthisiopulmonology Department with Training in Thoracic Surgery. E-mail: urninf@urninf.ru

Natalya G. Kamaeva

Candidate of Medical Sciences, Associate Professor, Professor of Phthisiopulmonology Department with Training in Thoracic Surgery.

E-mail: kamayeva@gmail.com

Irina A. Dolmatova

Regional TB Dispensary, Doctor. 45, Slavyanskaya St., Yekaterinburg, 620010.

Submitted as of 10.07.2016