BCG-вакцинирование как протекция от COVID-19: эпидемиологические и молекулярно-биологические аспекты


https://doi.org/10.21292/2075-1230-2020-98-5-6-14

Полный текст:


Аннотация

В обзоре рассматривается недавно появившаяся гипотеза о том, что национальная политика BCG-вакцинации влияет на распространение COVID-19 в разных странах. Представлены сведения из 70 источников с эпидемиологическими показателями, свидетельствующие за и против данной гипотезы, с описанием возможных механизмов неспецифического противовирусного действия BCG-иммунизации. Сделан вывод, что для верификации или опровержения гипотезы пока недостаточно данных и в данный момент использование вакцины BCG для предотвращения распространения инфекции даже в группах высокого риска было бы необоснованно.

Об авторах

Я. Ш. Шварц
ФГБУ «Новосибирский научно-исследовательский институт туберкулеза» МЗ РФ
Россия
Шварц Яков Шмульевич заместитель директора по науке


Н. В. Ставицкая
ФГБУ «Новосибирский научно-исследовательский институт туберкулеза» МЗ РФ
Россия
Ставицкая Наталия Васильевна и. о. директора


Д. А. Кудлай
ФГБУ «ГНЦ Институт иммунологии» ФМБА России
Россия
Кудлай Дмитрий Анатольевич доктор медицинских наук, ведущий научный сотрудник лаборатории персонализированной медицины и молекулярной иммунологии № 71


Список литературы

1. Шварц Я. Ш., Белогородцев С. Н., Филимонов П. Н., Селедцова Г. В. Действие модуляторов активности мевалонатного биохимического пути на реактивность макрофагов при экспериментальном нефросклерозе // Мед. иммунология. – 2009. – № 11. – С. 499-508.

2. Шварц Я. Ш., Хощенко О. М., Душкин М. И., Феофанова Н. А. Действие холестерина и агонистов гормональных ядерных рецепторов на продукцию трансформирующего фактора роста-β в макрофагах // Бюл. эксперим. биологии и медицины. – 2009. – № 148. – С. 294-297.

3. Aaby P., Kollmann T., Benn C. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges // Nat. Immunol. – 2014. – № 15. – Р. 895-899. https://doi.org/10.1038/ni.2961.

4. Abubakar I., Pimpin L., Ariti C., Beynon R., Mangtani P. et al. Systematic review and meta-analysis of the current evidence on the duration of protection by Bacillus Calmette-Guérin vaccination against tuberculosis // Health Technol. Assess. – 2013. – № 37. – P. 1-372. doi: 10.3310/hta17370.

5. Allen I. C., Scull M. A., Moore C. B., Holl E. K., McElvania-TeKippe E. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA // Immunity. – 2009. – Vol. 30, № 4. – P. 556-565.

6. Aronson N. E., Santosham M., Comstock G. W., Howard R. S., Moulton L. H. et al. Long-term efficacy of BCG vaccine in American Indians and Alaska Natives: a 60-year follow-up study // JAMA. – 2004. – Vol. 291, № 17. – P. 2086-2091.

7. Arts R. J. W., Moorlag S. J. C. F. M., Novakovic B., Li Y., Wang S. Y. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity // Cell Host & Microbe. – 2018. – Vol. 23, № 1. – P. 89-100. doi: 10.1016/j.chom.2017.12.010.

8. Asahara M. The effect of BCG vaccination on COVID-19 examined by a statistical approach: no positive results from the Diamond Princess and cross-national differences previously reported by world-wide comparisons are flawed in several ways. doi: https://doi.org/10.1101/2020.04.17.20068601.

9. BCG vaccination and COVID-19. Scientific brief. WHO, April 12, 2020.

10. Barreto M. L., Cunha S. S., Pereira S. M., Genser B., Hijjar M. A. et al. Neonatal BCG protection against tuberculosis lasts for 20 years in Brazil // Int. J. Tuberc. Lung Dis. – 2005. – Vol. 9, № 10. – P. 1171-1173.

11. Bekkering S., Arts R. J. W., Novakovic B., Kourtzelis I., van der Heijden C. et al. Metabolic induction of trained immunity through the mevalonate pathway // Cell. – 2018. – Vol. 172, № 1-2. – P. 135-146. https://doi.org/10.1016/j.cell.2017.11.025 PMID: 29328908.

12. Berg M. K., Yu Q., Salvador C. E., Melani I., Kitayama S. Mandated BCG vaccination predicts flattened curves for the spread of COVID-19. doi: 10.1101/2020.04.05.20054163.

13. Biering-Sørensen S., Aaby P., Lund N., Monteiro I., Jensen K. J. et al. Early BCG-Denmark and neonatal mortality among infants weighing < 2500 g: a randomized controlled trial // Clin. Infect. Dis. – 2017. ‒ Vol. 65, № 7. – P. 1183-1190.

14. Braun J., Loyal L., Frentsch M., Wendisch D., Georg P. et al. Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. doi: 10.1101/2020.04.17.20061440.

15. Brosch R., Gordon S., Garnier T., Eiglmeier K., Frigui W. et al. Genome plasticity of BCG and impact on vaccine efficacy // Proc. Natl. Acad. Sci. USA. – 2007. – Vol. 104, № 13. – P. 5596-5601.

16. Chen J. M., Islam S. T., Ren H., Liu J. Differential productions of lipid virulence factors among BCG vaccine strains and implications on BCG safety // Vaccine. – 2007. Vol. 25, № 48. – P. 8114-8122.

17. Davids V., Hanekom W. A., Mansoor N., Gamieldien H., Sebastian J. G. et al. The effect of Bacille Calmette-Guérin vaccine strain and route of administration on induced immune responses in vaccinated infants // J. Infect. Dis. – 2006. – Vol. 193, № 4. – P. 531-536.

18. Dockrell H. M., Smith S. G. What have we learnt about BCG vaccination in the last 20 years? // Front. Immunol. – 24 May 2018. doi: 10.3389/fimmu.2017.01134.

19. Egen J. G. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas // Immunity. – 2008. – Vol. 28, № 2. – P. 271-284.

20. Floc'h F., Werner G. H. Increased resistance to virus infections of mice inoculated with BCG (Bacillus calmette-guerin) // Ann. Immunol. ‒ 1976. – Vol. 127, № 2. – P. 173-186.

21. Fukui M., Kawaguchi K., Matsuura H. Does TB vaccination reduce COVID-19 infection? No evidence from a regression discontinuity analysis. doi: 10.1101/2020.04.13.20064287.

22. Garly M. L. et al. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa: A non-specific beneficial effect of BCG? // Vaccine. – 2003. – Vol. 21, № 21-22. – P. 2782-2790.

23. Gursel M., Gursel I. Is global BCG vaccination coverage relevant to the progression of SARS-CoV-2 pandemic? // Med. Hypotheses. – 2020., doi: 10.1016/j.mehy.2020.109707.

24. Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J. et al. Impaired type I interferon activity and exacerbated inflammatory responses in severe Covid-19 patients. doi: 10.1101/2020.04.19.20068015.

25. Hegarty P. K., Kamat A., Zafirakis H., DiNardo A. BCG vaccination may be protective against Covid-19. https://www.researchgate.net/publication/340224580.

26. Hensel J., McGrail D. J., McAndrews K. M., Dowlatshahi D., LeBleu V. S. Exercising caution in correlating COVID-19 incidence and mortality rates with BCG vaccination policies due to variable rates of SARS CoV-2 testing. doi: 10.1101/2020.04.08.20056051.

27. Higgins J., Soares-Weiser K., Reingold K. Systematic review of the nonspecific effects of BCG, DTP and measles containing vaccines https://www.who.int/immunization/sage/meetings/2014/april/3_NSE_Epidemiology_review_Report_to_SAGE_14_Mar_FINAL.pdf?ua=1. 28.Hippmann G., Wekkeli M., Rosenkranz A. R., Jarisch R., Gotz M. Nonspecific immune stimulation with BCG in Herpes simplex recidivans. Follow-up 5 to 10 years after BCG vaccination // Wien Klin Wochenschr. – 1992. – Vol. 104, № 7. – P. 200-204.

28. Hollm-Delgado M. G., Stuart E. A., Black R. E. Acute lower respiratory infection among Bacille Calmette-Guerin (BCG)-vaccinated children // Pediatrics. – 2014. – Vol. 133, № 1. – P. 73-81. doi: 10.1542/peds.2013-2218. PubMed PMID: 24379224.

29. Hsu L. C., Ali S. R., McGillivray S., Tseng P. H., Mariathasan S. et al. A NOD2-NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide // PNAS. – 2008. – Vol. 105. – P. 7803-7808.

30. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6.

31. Jenneke L. et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: a randomized, placebo-controlled pilot study // J. Infect. Dis. – 2012. ‒ № 12. – P. 1930-1938.

32. Kapetanovic R., Nahori M. A., Balloy V., Fitting C., Philpott D. J. et al. Contribution of phagocytosis and intracellular sensing for cytokine production by Staphylococcus aureus-activated macrophages // Infect. Immun. – 2007. – № 75. – P. 830-837.

33. Kaufmann E., Sanz J., Dunn J. L., Khan N., Mendonca L. E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis // Cell. – 2018. – Vol. 172, № 1-2. – P. 176-190. https://doi.org/10.1016/j.cell.2017.12.031.

34. Kaveh D., Garcia-Pelayo M., Hogarth P. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis // Vaccine. – 2014. – Vol. 32, № 51. – P. 6911-6918.

35. Kirov S. A. Association between BCG policy and COVID19 infection rates is significantly confounded by age and is unlikely to alter infection or mortality rates. April 2020. doi: 10.1101/2020.04.06.20055616.

36. Korf J., Stoltz A., Verschoor J., De Baetselier P., Grooten J. The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses // Eur. J. Immunol. – 2005. – Vol. 35, № 3. – P. 890-900.

37. Kutsukake H., Nagao S., Tanaka A. Arrest of DNA replication of macrophages in BCG granuloma and peritoneal exudates by bacteria // Microbiol. Immunol. – 1990. – Vol. 34, № 2. – P. 197-210.

38. Mangtani P., Nguipdop-Djomo P., Keogh R. H., Trinder L., Smith P. G. et al. Observational study to estimate the changes in the effectiveness of Bacillus Calmette-Guérin (BCG) vaccination with time since vaccination for preventing tuberculosis in the UK // Health Technol. Assess. – 2017. – Vol. 21. – P. 1-54 doi: 10.3310/hta21390.

39. Mathurin K. S., Martens G. W., Kornfeld H., Welsh R. M. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses // J. Virology. – 2009. – Vol. 83, № 8. – P. 3528-3539.

40. Mendum T. A., Chandran A., Williams K. et al. Transposon libraries identify novel Mycobacterium bovis BCG genes involved in the dynamic interactions required for BCG to persist during in vivo passage in cattle // BMC Genomics. – 2019. – Vol. 20. – P. 431. doi: 10.1186/s12864-019-5791-1.

41. Miller A., Reandelar M. J., Fasciglione K., Roumenova V., Li Y. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study doi: 10.1101/2020.03.24.20042937.

42. Minnikin D. E., Parlett J. H., Magnusson M., Ridell M., Lind A. Mycolic acid patterns of representatives of Mycobacterium bovis BCG // J. General Microbiology. – 1984. – № 130. – P. 2733-2736.

43. Mitroulis I., Ruppova K., Wang B., Chen L. S., Grzybek M. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity // Cell. – 2018. – Vol. 172, № 1-2. – P. 147-161. doi: 10.1016/j.cell.2017.11.034.

44. Moorlag S. J. C. F. M., Arts R. J. W., van Crevel R., Netea M. G. Non-specific effects of BCG vaccine on viral infections // Clin. Microbiol. Infect. – 2019. – Vol. 25, № 12. – P. 1473-1478. doi: 10.1016/j.cmi.2019.04.020. Epub 2019 May 2.

45. Nankabirwa V. et al. Child survival and BCG vaccination: a community based prospective cohort study in Uganda // BMC Public Health. – 2015. – Vol. 15, № 175. – P. 1-10.

46. Netea M. G., Domínguez-Andrés J., Barreiro L. B., Chavakis T., Divangahi M. Defining trained immunity and its role in health and disease // Nat. Rev. Immunol. – 2020. – Mar 4. doi: 10.1038/s41577-020-0285-6.

47. Netea M. G., Quintin J., van der Meer J. W. Trained immunity: a memory for innate host defense // Cell Host Microbe. – 2011. – Vol. 9, № 5. – P. 355-361. doi: 10.1016/j.chom.2011.04.006.

48. Netea M. G., Joosten L. A., Latz E., Mills K. H., Natoli G. et al. Trained immunity: A program of innate immune memory in health and disease // Science. – 2016. – Vol. 352 (6284). doi: 10.1126/science.aaf1098.

49. Nguipdop-Djomo P., Heldal E., Rodrigues L. C., Abubakar I., Mangtani P. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study // Lancet Infect. Dis. – 2016. – № 16. ‒ P. 219-226. doi:10.1016/S1473-3099(15)00400-4.

50. Ota M. O. C., Vekemans J., Schlegel-Haueter S. E. et al. Influence of Mycobacterium bovis Bacillus Calmette-Guérin on antibody and cytokine responses to human neonatal vaccination // J. Immunology. – 2002. – Vol. 168, № 2. – P. 919-925.

51. Pitzer V. E., Chitwood M., Havumaki J., Menzies N. A., Perniciaro S. et al. The impact of changes in diagnostic testing practices on estimates of COVID-19 transmission in the United States. doi: 10.1101/2020.04.20.20073338v1.

52. Rathinam V. A. K., Fitzgerald K. A. Inflammasomes and anti-viral immunity // J. Clin Immunology. – 2010. – Vol. 30, № 5. – P. 632-637.

53. Sala G., Miyakawa T. Association of BCG vaccination policy with prevalence and mortality of COVID-19. doi: 10.1101/2020.03.30.20048165.

54. Schwartz Y. Sh., Svistelnik A. V. Functional phenotypes of macrophages and the M1-M2 polarization concept. Part I. Proinflammatory phenotype // Biochemistry (Moscow). – 2012. – Vol. 77, № 3. – P. 246-260.

55. Seishima M., Fujisawa T., Yamanaka S., Ishii N., Mori S. et al. BCG granuloma appearing more than 50 years after vaccination // Arch. Dermatol. – 2006. – Vol. 142. – P. 249-250. Doi: 10.1001/archderm.142.2.249.

56. Sergerie Y., Boivin G., Rivest S. Tumor necrosis factor-a and interleukin-1b play a critical role in the resistance against lethal herpes simplex virus encephalitis // J. Infect. Dis. – 2007. – Vol. 196, № 6. – P. 853-860.

57. Shann F. Nonspecific effects of vaccines and the reduction of mortality in children // Clin. Ther. – 2013. ‒ Vol. 35, № 2. – P. 109-114.

58. Shet A., Ray D., Malavige N., Santosham M., Bar-Zeev N. Differential COVID-19-attributable mortality and BCG vaccine use in countries. doi: 10.1101/2020.04.01.20049478.

59. Shivendu S., Chakraborty S., Onuchowska A., Patidar A., Srivastava A. Is there evidence that BCG vaccination has non-specific protective effects for COVID 19 infections or is it an illusion created by lack of testing? doi: 10.1101/2020.04.18.20071142.

60. Spencer J. C., Ganguly R., Waldman R. H. Nonspecific protection of mice against influenza virus infection by local or systemic immunization with Bacille Calmette-Guerin // J. Infect. Dis. – 1977. – Vol. 136, № 2. – P. 171-175. doi: 10.1093/infdis/136.2.171.

61. Sterne J. A., Rodrigues L. C., Guedes I. N. Does the efficacy of BCG decline with time since vaccination? // Int. J. Tuberc. Lung. Dis. – 1998. – Vol. 2, № 3. – P. 200-207.

62. Szigeti R., Kellermayer D., Kellermayer R. BCG protects against COVID-19? A word of caution. doi: 10.1101/2020.04.09.20056903.

63. Thomas P. G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza a virus via the regulation of caspase-1 // Immunity. – 2009. – Vol. 30, № 4. – P. 566-575.

64. Uthayakumar D., Paris S., Chapat L., Freyburger L., Poulet H. et al. Non-specific effects of vaccines illustrated through the BCG example: from observations to demonstrations // Front Immunol. – 2018. – № 9:2869. Published online 2018 Dec 4. doi: 10.3389/fimmu.2018.02869.

65. Vander Beken S., Al Dulayymi J., Naessens T., Koza G., Maza-Iglesias M. et al. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern // Eur. J. Immunol. – 2011. – Vol. 41, № 2. – P. 450-460.

66. Wager L. C. M., Hole C. R., Campuzano A., Castro-Lopez N., Cai H. et al. IFN-γ immune priming of macrophages in vivo induces prolonged STAT1 binding and protection against Cryptococcus neoformans // PLoS Pathog. – 2018. – Vol. 14, № 10. ‒ Р. e1007358. https://doi.org/10.1371/journal.ppat.1007358.

67. Wardhana, Datau E. A., Sultana A., Mandang V. V., Jim E. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly // Acta Med. Indones. – 2011. – Vol. 43, № 3. – P. 185-190.

68. Wilk A. J., Rustagi A., Zhao N. Q., Roque J., Martinez-Colon G. J. et al. A single-cell atlas of the peripheral immune response to severe COVID-19. doi: 10.1101/2020.04.17.20069930.

69. www.worldometers.info/coronavirus/


Дополнительные файлы

Для цитирования: Шварц Я.Ш., Ставицкая Н.В., Кудлай Д.А. BCG-вакцинирование как протекция от COVID-19: эпидемиологические и молекулярно-биологические аспекты. Туберкулез и болезни легких. 2020;98(5):6-14. https://doi.org/10.21292/2075-1230-2020-98-5-6-14

For citation: Shvartz Y.S., Stavitskaya N.V., Kudlay D.A. BCG vaccination as protection from COVID-19: epidemiological and molecular biological aspects. Tuberculosis and Lung Diseases. 2020;98(5):6-14. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-5-6-14

Просмотров: 317

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)