Preview

Tuberculosis and Lung Diseases

Advanced search

Coronaviruses as causative agents of severe respiratory diseases

https://doi.org/10.21292/2075-1230-2020-98-7-6-13

Abstract

The review presents 61 publications on the molecular mechanisms of pathogenicity, specific parameters of the infectious process and possibilities of laboratory diagnosis of coronaviruses, including SARS-CoV-2 - of the causative agent of COVID-19.

About the Authors

А. E. Panova
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Anna E. Panova, Head of Laboratory Diagnostics Department,
Head of Research Microbiology Laboratory

Build. 2, 4, Dostoevskiy St., Moscow, 127473 



I. B. Kulikova
Department of Emergency Care Organisation and Health Risk Management
Russian Federation

Inna B. Kulikova, Director

3. Pakhmanovsky Lane, Moscow, GSP-4, 127994

Phone +7(495) 627-24-84



D. А. Lagutkin
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Denis A. Lagutkin, Junior Researcher of Research Microbiology Laboratory

Build. 2, 4, Dostoevskiy St., Moscow, 127473 

Phone: +7 (495) 688-41-85



А. S. Vinokurov
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Anatoliy S. Vinokurov, Bacteriologist of Research Microbiology Laboratory

Build. 2, 4, Dostoevskiy St., Moscow, 127473 

Phone: +7 (495) 688-41-85



M. V. Shulgina
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Marina V. Shulgina, Advisor to Director in Research

Build. 2, 4, Dostoevskiy St., Moscow, 127473 



I. А. Vasilyeva
National Medical Research Center of Phthisiopulmonology and Infectious Diseases
Russian Federation

Irina A. Vasilyeva, Doctor of Medical Sciences, Professor, Director

Build. 2, 4, Dostoevskiy St., Moscow, 127473



References

1. Barinov V.E., Boyarintsev V.V. Venous thrombotic complications as a concurrent condition of the new coronavirus infection of COVID-19. Kremlevskaya Meditsina. Klinicheskiy Vestnik, 2020, no. 2, pp. 22-27. (In Russ.) doi: 10.26269/ayxs-2p77.

2. Veselova E.I., Russkikh А.E., Kaminskiy G.D., Lovacheva O.V., Samoylova А.G., Vasilyeva I.А. Novel coronavirus infection. Tuberculosis and Lung Diseases, 2020, vol. 98, no. 4, pp. 6-14. (In Russ.) http://doi.org/10.21292/2075-1230-2020-98-4-6-14.

3. Lvov D.K., Kolobukhina L.V., Deryabin P.G. Coronaviral infection. Severe acute respiratory distress syndrome. Infektsionnye Bolezni: Novosti, Mneniya, Obuchenie, 2015, no. 4, pp. 35-42. (In Russ.)

4. Nikiforov V.V., Suranova T.G., Chernobrovkina T.Ya., Yankovskaya Ya.D., Burova S.V. New coronavirus infection (COVID-19): clinical and epidemiological aspects. Arkhiv Vnutrenney Meditsiny, 2020, vol. 10, no. 2 (52), pp. 87-93. (In Russ.)

5. Pshenichnaya N.Yu., Veselova E.I., Semenova D.А., Ivanova S.S., Zhuravlev А.S. COVID-19 - a new global threat to humanity. Epidemiologiya i Infektsionnye Bolezni, Aktualnye Voprosy, 2020, vol. 10, no. 1, pp. 6-13. (In Russ.) doi: 10.18565/epidem.2020.10.1.6-13.

6. Starshinova А.А., Kushnareva E.А., Malkova А.M., Dovgalyuk I.F., Kudlay D.А. New coronaviral infection: features of clinical course, capabilities of diagnostics, treatment and prevention in adults and children. Voprosy Sovremennoy Pediatrii, 2020, vol. 19, no 2, pp. 123–131 (In Russ.). doi: 10.15690/vsp.v19i2.2105.

7. Ai T., Zhenlu Yang Z., Hongyan Hou H. et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology RSNA, 2020, https://doi.org/10.1148/radiol.2020200642 (Accessed 24.06.2020).

8. Baig A.M. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neuroscience and Therapeutics, 2020, no. 5 (26), pp. 499-501.

9. Baud D., Qi X., Nielsen-Saines K., Musso D., Pomar L., Favre G. Real estimates of mortality following COVID-19 infection. Lancet Infect. Dis., 2020, no. 20 (3099), pp. 30195.

10. Bertram S., Dijkman R., Habjan M., Heurich A., Gierer S. TMPRSS2 activates the human Coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J. Virolology, 2013, no. 11 (87), pp. 6150-6160.

11. Chan J.F.W., Yip C.Ch.-Y., To K.K.-W. et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR assay validated in vitro and with clinical specimens. J. Clin. Microbiol., 2020, no. 58 (5), pp. e00310-20. doi: 10.1128/JCM.00310-20.

12. Chu H., Chan J.F.-W., Yuen T.T.-T., Shuai H., Yuan S., Wang Y. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe, 2020, no. 20 (5247).

13. Corman V.M., Landt O., Kaiser M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. EuroSurveill., 2020, no. 25 (3), pii=2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.

14. Day M. Covid-19: identifying and isolating asymptomatic people helped eliminate virus in Italian village. BMJ, (Clinical research ed.). 2020, no. 3 (368), pp. 1165.

15. Iba T. , Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19. J. Thromb. Haemost., 2020, Jun. 18;10.1111/jth.14975. doi: 10.1111/jth.14975.

16. Fehr A.R., Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses: Methods and Protocols, 2015, no. 1 (1282), pp. 1-23.

17. Fu S., Qu G., Guo S. et al. Applications of loop-mediated isothermal DNA amplification. Appl. Biochem. Biotechnol., 2011, no. 163 (7), pp. 845-850. doi:10.1007/s12010-010-9088-8.

18. Gierer S., Bertram S., Kaup F. The spike protein of the emerging betacoronavirus emc uses a novel coronavirus receptor for entry, can be activated by tmprss2, and is targeted by neutralizing antibodies. J. Virolology, 2013, no. 10 (87), pp. 5502-5511.

19. Hamming I. Tissue distribution of ACE2 protein, the functional receptor for SARS Coronavirus. J. Pathol., 2004, no. 2 (203), pp. 631-637.

20. He X., Lau E.H.Y., Wu P. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine, 2020, no. 26, pp. 672-675/. https://doi.org/10.1038/s41591-020-0869-5.

21. Hoffmann M., Kleine-Weber H., Krueger N. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv. 2020, pp. 2020.01.31.929042.

22. Huh H.J., Kim J.Y., Kwon H.J. et al. Performance evaluation of the PowerChek MERS (upE & ORF1a) Real-Time PCR Kit for the detection of Middle East Respiratory Syndrome Coronavirus RNA. Ann. Lab. Med., 2017, no. 37 (6), pp. 494-498. doi:10.3343/alm.2017.37.6.494.

23. Jia H.P., Look D.C., Shi L. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virolology, 2005, no. 23 (79), pp. 14614-14621.

24. Kabbani N., Olds J. L. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Molecular Pharmacology, 2020, no. 5 (97), pp. 351-353.

25. Kandeel M., Ibrahim A., Fayez M., Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: Moving toward more biased codon usage in viral structural and nonstructural genes. J. Med. Virol., 2020, no. 92 (6), pp. 660-666. doi:10.1002/jmv.25754.

26. Keeling M.J., Grenfell B.T. Individual-based perspectives on R0. J. Theoretical Biology, 2000, no. 1 (203), pp. 51-61.

27. Laporte M., Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Current Opinion in Virology, 2017, no. 24, pp. 16-24.

28. Lee M.S., Lin Y.C., Lai G.H., Lai S.Y., Chen H.J., Wang M.Y. One-step reverse-transcription loop-mediated isothermal amplification for detection of infectious bursal disease virus. Can. J. Vet. Res., 2011, no. 75 (2), pp. 122-127.

29. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 2020, no. 4 (5), pp. 562-569.

30. Liu Y., Gayle A.A., Wilder-Smith A. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med., 2020, no. 2 (27), pp. 1-4.

31. Liu R., Han H., Liu F. et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China. Clinica Chimica Acta, 2020, no. 505, 10.1016/j.cca.2020.03.009.

32. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J., Baxter-Stoltzfus A., Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases . Transl Res., 2020, no. 220, pp. 1-13. doi: 10.1016/j.trsl.2020.04.007.

33. Masters P.S. The molecular biology of coronaviruses. Advances in Virus Research, 2006, no. 6 (65), pp. 193-292.

34. Menon P.K., Kapila K., Ohri V.C. Polymerase chain reaction and advances in infectious disease diagnosis. Med. J. Armed. Forces India, 1999, no. 55 (3), pp. 229-231. doi:10.1016/S0377-1237(17)30450-1.

35. Mizumoto K., Kagaya K., Zarebski A. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance, 2020, no. 10 (25), pp. 1-5.

36. Pan Y., Zhang D., Yang P. Viral load of SARS-CoV-2 in clinical samples. Lancet Infectious Diseases, 2020, no. 4 (20), pp. 411-412.

37. Ramanathan K., Antognini D., Combes A. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet, 2020, no. 3 (395), pp. 931-934.

38. Reusken C.B.E.M., Broberg E.K., Haagmans B. et al. Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries. EuroSurveill., 2020, 25(6):pii=2000082. https://doi.org/10.2807/1560-7917.ES. 2020.25.6.2000082.

39. Rice G.I., Thomas D.A., Grant P.J. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochemical J., 2004, no. 1 (383), pp. 45-51.

40. Ruan Q., Yang K., Wang W. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intens. Care Med., 2020.

41. Serology-based tests for COVID-19. John Hopkins Bloomberg School of Public Health. Centre for health security. Epub., Available: https://www.centerforhealthsecurity.org/resources/COVID-19/serology/Serology-basedtests-for-COVID-19.html (Accessed 18.05.2020).

42. Sethuraman N., Jeremiah S.S., Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA, 2020, no. 323 (22), pp. 2249-2251. doi:10.1001/jama.2020.8259.

43. Shen B., Zheng Y., Zhang X. et al. Clinical evaluation of a rapid colloidal gold immunochromatography assay for SARS-Cov-2 IgM/IgG. Am. J. Transl. Res., 2020, no. 12 (4), pp. 1348-1354.

44. Shirato K., Kawase M., Matsuyama S. Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2. J. Virology, 2013, no. 23 (87), pp. 12552-12561.

45. Tang X., Wu Ch., Li X. et al. On the origin and continuing evolution of SARS-CoV-2 National Science Review, nwaa036, 26 p. https://doi.org/10.1093/nsr/nwaa036.

46. Tichopad A., Kitchen R., Riedmaier I., Becker C., Ståhlberg A., Kubista M. Design and optimization of reverse-transcription quantitative PCR experiments. Clin. Chem., 2009, no. 55 (10), pp. 1816-1823. doi:10.1373/clinchem.2009.126201.

47. To K.K.W., Tsang O.T.Y., Leung W.S. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis., 2020, no. 5 (20), pp. 565-574.

48. Walls A.C., Park Y.J., Tortorici M.A. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, no. 2 (181), pp. 281-292.

49. Wang H., Li X., Li T. et al.The genetic sequence, origin and diagnosis of SARS-CoV-2. Eur. J. Clin. Microbiol. Inf. Dis., 2020, pp. 1-7. Advance online publication. https://doi.org/10.1007/s10096-020-03899-4.

50. Weiss P., Murdoch D.R. Clinical course and mortality risk of severe COVID-19. Lancet, 2020, no. 10229 (395), pp. 1014-1015.

51. WHO Coronavirus Disease (COVID-19) Dashboard. Epub., Available: https://covid19.who.int/?gclid=CjwKCAjwwYP2BRBGEiwAkoBpAlnhE04LXmxyA-81JraG1LnxYH4G5mgXp2_0x6sgO_PDSlAFwVi2JhoCemQQAvD_BwE (Accessed 18.05.2020).

52. World Health organization Laboratory Testing for Middle East Respiratory Syndrome Coronavirus Interim recommendations September 2013. Epup., Available: https://www.who.int/csr/disease/coronavirus_infections/MERS_Lab_recos_16_Sept_2013.pdf (Accessed 18.05.2020).

53. World Health Organization. MERS situation update, January 2020, Epub.,. Available: http://www.emro.who.int/pandemic-epidemicdiseases/mers-cov/mers-situation-update-january-2020.html (Accessed 18.05.2020).

54. World Health organization.COVID-19 strategy update. 14 April 2020, 15 p. (Epub.) Available: https://www.who.int/docs/default-source/coronaviruse/covid-strategy-update-14april2020.pdf?sfvrsn=29da3ba0_19 (Accessed 18.05.2020).

55. Xiang F., Wang X., He X. et al. Antibody detection and dynamic characteristics in patients with COVID-19. Clin. Infect. Dis., 2020-ciaa461. doi:10.1093/cid/ciaa461.

56. Yan R., Zhang Y., Li Y. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, no. 6485 (367), pp. 1444-1448.

57. Yang Y., Yang M., Shen C. et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. medRxiv-2020. doi: http:10.1101/2020.02.11.20021493v2.

58. Ye Q., Wang B., Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infection, 2020, no. 6 (80), pp. 607-613.

59. Yu F., Yan L., Wang N. et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis., 2020.-ciaa345. doi: http 10.1093/cid/ciaa345.

60. Zhang Y.-Z., Holmes E.C. A genomic perspective of the origin and emergence of SARS-CoV-2. Cell, 2020, no. 181, pp. 223-227.

61. Zheng Y.Y., Ma Y.T., Zhang J.Y. COVID-19 and the cardiovascular system. Nature Reviews Cardiology, 2020, no. 5 (17), pp. 259-260.

62. Zhou P., Yang X. Lou, Wang X. G. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, no. 7798 (579), pp. 270-273.


Review

For citations:


Panova А.E., Kulikova I.B., Lagutkin D.А., Vinokurov А.S., Shulgina M.V., Vasilyeva I.А. Coronaviruses as causative agents of severe respiratory diseases. Tuberculosis and Lung Diseases. 2020;98(7):6-13. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-7-6-13

Views: 1215


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)