Control tactics and evaluation of clinical efficacy of therapy in children with bronchial asthma associated with mycoplasma infection
https://doi.org/10.21292/2075-1230-2021-99-5-35-41
Abstract
The uncontrolled course of bronchial asthma (BA) in children and insufficient efficacy of standard therapy regimens may be due to underestimated infectious factors.
The objective: to study specific parameters of the course and treatment of mycoplasma infection, improve monitoring over BA therapy in children of the tender and preschool age.
Subjects and methods. 320 children with BA in the age from 1 to 7 years old were followed up. In this work, Mycoplasma pneumoniae (FH), Mycoplasma hominis (H-34), Ureaplasma urealyticum (serotype 8), Mycoplasma fermentans (PG18) and Mycoplasma arthritidis (PG6) were used, they were cultured on a liquid medium for cultivation of mycoplasmas and ureaplasmas. To isolate CIC from blood serum samples, we used the method of precipitation with 3.5% polyethylene glycol (PEG, 6000 Da), hemagglutination assays and IFA were used to identify mycoplasma antigens, mycoplasma DNA was detected by PCR with InterLabService diagnostic kits. The data of 47 patients with prolonged mycoplasma antigenemia were assessed at the baseline and in 1.5-3 months after the treatment course of azithromycin.
Results. 320 blood serum samples from children with BA were tested, and the detection rate by hemagglutination assays of M. pneumoniae antigens was 60.9%, M. hominis – 43.4%, U. urealyticum – 44.8%, M. arthritidis – 29.7%, M. fermentrans – 45.3%. The assessment of relationship between of M. pneumoniae, M. hominis and asthma exacerbation showed that antigens of M. pneumoniae and M. hominis were found in 216 children (single or associated). After treatment with azithromycin, the frequency of BA exacerbations within 3 months decreased by 2.4 times, as well as there was a reduction in the number of samples positive for antigens and DNA of mycoplasma in a free state and within CIC. The persistence of antigens, DNA of M. pneumoniae and M. hominis before treatment of 47 children was 80.9 and 66.0% of cases, after treatment with azithromycin – 31.9 and 25.5% of cases, respectively (p < 0.001). Within CIC isolated from the blood serum of patients, antigens to M. pneumoniae and M. hominis before treatment were detected by IFA in 63.8 and 70.2% of children, after treatment – in 31.9 and 23.4%, respectively. p < 0.001. In blood samples, DNA of M. pneumoniae and M. hominis was detected by PCR before treatment in 8.5 and 34.0%; after treatment in 6.4% (p = 0.318) and 19.1% of cases, respectively (p = 0.009), and within CIC isolated from blood serum, in 27.7 and 48.9% of cases before treatment and 8.5 and 34.0% after it, respectively (p = 0.009).
About the Authors
L. G. GorinaRussian Federation
Luiza G. Gorina, Doctor of Biological Sciences, Leading Researcher of Laboratory of Mycoplasma and L-forms of Bacteria
18, Gamaleya St., Moscow, 123098
N. А. Krylova
Russian Federation
Natalya A. Krylova, Associate Professor of Pediatric Diseases Department, Children of Pediatric Health Clinical Institute named after N.F. Filatov
8, Bd. 2, Trubetskaya St., Russia Moscow, 119991
I. V. Rakovskaya
Russian Federation
Irina V. Rakovskaya, Doctor of Biological Sciences, Leading Researcher, Head of Laboratory of Mycoplasma and L-forms of Bacteria
18, Gamaleya St., Moscow, 123098
S А. Goncharova
Russian Federation
Svetlana A. Goncharova Candidate of Biological Sciences, Senior Researcher of Laboratory of Mycoplasma and L-forms of Bacteria
18, Gamaleya St., Moscow, 123098
O. I. Barkhatova
Russian Federation
Olga I. Barkhatova, Candidate of Biological Sciences, Senior Researcher of Laboratory of Mycoplasma and L-forms of Bacteria
18, Gamaleya St., Moscow, 123098
References
1. Аgafonova O.V., Gritsenko T.А., Bogdanova Yu.V., Bulgakova S.V., Kosyakova Yu.А., Davydkin I., Danilova O.E., Dzyubaylo А.V., Dyachkov V.А., Zakharova N.O., Zolotovskaya I.А., Kolsanov А.V., Kotelnikov G.P., Krivova S.P., Kudlay D.А., Kupaev V.I., Kurtov I.V., Lebedeva E.А., Menzul E.V., Nazarkina I.M. et al. Poliklinicheskaya Terapiya. Uchebnik. [Polyclinic therapy. Handbook]. Davydkin I.L., Schukin Yu.V., eds., 2nd edition, reviewed and supplemented, Moscow, GEOTAR-Media Publ., 2020, 840 p. ISBN 978-5-9704-5545-6.
2. Barkhatova O.I., Аndreevskaya S.G., Аlekseeva N.V., Zhukhovitskiy V.G., Rakovskaya I.V. In vitro biofilm formation by Mycoplasma pneumonia, the germ causing respiratory mycoplasmosis. Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2019, no. 3, pp. 122-127. (In Russ.)
3. Gorina L.G., Rakovskaya I.V., Barkhatova O.I., Goncharova S.А. Etiological interpretation of the outbreak of community-acquired pneumonia caused by Mycoplasma pneumoniae. Journal Mikrobiologii, Epidemiologii i Immunobiologii, 2014, no. 6, pp. 117-120. (In Russ.)
4. Gorina L.G., Rakovskaya I.V., Barkhatova O.I., Goncharova S.А., Levina G.А., Krylova N.А. Circulating immune complexes as a depot for preservation of cellular components of mycoplasma. Journal Mikrobiologii, Epidemiologii i Immunobiologii, 2013, no. 2, pp. 74-82. (In Russ.)
5. Gorina L.G., Goncharova S.А., Igumnov А.V. Laboratory diagnostics of human mycoplasmosis. Vestnik AMN SSSR, 1991, no. 6, pp. 44-47. (In Russ.)
6. Mamaev А.N., Kudlay D.А. Statisticheskiye metody v meditsine. [Statistical methods in medicine]. Moscow, Prakticheskaya Meditsina Publ., 2021, 136 p. ISBN 978-5-98811-635-6.
7. Eydelshtein I.А., Eydelshteyn M.V., Romanov А.V., Zaytsev А.А., Rakovskaya I.V., Barkhatova O.I. et al. Four cases of detecting mutations in the 23S rRNA gene of Mycoplasma pneumonia isolated from military personnel with pneumonia being treated in a military hospital. Klinicheskaya Mikrobiologiya i Antimikrobnaya Khimioterapiya, 2017, vol. 19, no. 3, pp. 248-253. (In Russ.)
8. Alane Blythe C. Dy, Sasipa Tanyaratsrisakul, Dennis R. Voelker2 and Julie G Ledford. The emerging roles of surfactant protein-A in asthma // J. Clin. Cell. Immunol. ‒ 2018. ‒ Vol. 9, № 4. ‒ 553. DOI: 10.4172/2155-9899.1000553.
9. Maselli D. J., Medina J. L., Brooks E. G., Coalson J. J., Kannan T. R., Winter V. T. et al. The immunopathologic effects of Mycoplasma pneumoniae and community-acquired respiratory distress syndrome toxin. A primate model // Am. J. Respir. Cell. Mol. Biol. ‒ 2018. ‒ Vol. 58, № 2. – Р. 53-260. DOI: 10.1165/rcmb.2017-0006OC.
10. Medjo B., Atanaskovic-Markovic M., Nikolic D., Radic S., Lazarevic I., Cirkovic I. et al. Increased serum interleukin-10 but not interleukin-4 level in children with Mycoplasma pneumoniae pneumonia // J. Trop. Pediatr. ‒ 2017. ‒ Vol. 63, № 4. ‒ Р. 294-300. DOI:.1093/tropej/fmw091. PMID: 28057814.
11. Medina J. L., Brooks E. G., Chaparro A., Dube P. H. Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice // PLoS One. ‒ 2017. ‒ Vol. 12, № 2. ‒ Р. e0172447. DOI: 10.1371/journal.pone.0172447.
12. Rakovskaya I. V., Ermolaeva S. A., Levina G. A., Barkhatova O. I., Mukhachev A. Y., Andreevskaya S. G. et al. Microcolonies: a novel morphological form of pathogenic Mycoplasma spp. // J. Med. Microbiol. ‒ 2019. ‒ Vol. 68, № 12. ‒ Р. 1747-1758. DOI: 10.1099/jmm.0.001081.
13. Ramasamy K., Balasubramanian S., Manickam K., Pandranki L., Taylor A. B., Hart P. J. et al. Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin uses a Novel KELED sequence for retrograde transport and subsequent cytotoxicity // mBio. ‒ 2018. ‒ Vol. 9, № 1. ‒ Р.e01663-17. DOI: 10.1128/mBio.01663-17.
14. Schaunaman N., Sanchez A., Dimasuay K. G., Pavelka N., Numata M., Alam R. et al. Interleukin 1 Receptor-Like 1 (IL1RL1) promotes airway bacterial and viral infection and inflammation // Infect. Immun. ‒ 2019. ‒ Vol. 87, № 7. ‒ Р. e00340-19. DOI: 10.1128/IAI.00340-19.
15. Søndergaard M. J., Friis M. B., Hansen D. S., Jørgensen I. M. Clinical manifestations in infants and children with Mycoplasma pneumoniae infection // PLoS One. – 2018. ‒ Vol. 13, № 4. ‒ Р. e0195288. DOI: 10.1371/journal.pone.0195288.
16. Sun W., Pan L., Zhang W. Risk Factors for readmission of children hospitalized with acute asthma attacks in South China // J. Asthma. – 2019. ‒ № 29. ‒ Р. 1-10. DOI: 10.1080/02770903.2019.1705334.
17. Totten A. H., Xiao L., Luo D., Briles D., Hale J. Y., Crabb D. M. et al. Allergic airway sensitization impairs antibacterial igg antibody responses during bacterial respiratory tract infections // J. Allergy Clin. Immunol. – 2019. ‒ Vol. 143, № 3. ‒ Р. 1183-1197.e7. DOI: 10.1016/j.jaci.2018.07.021.
18. Wood P. R., Kampschmidt J. C., Dube P. H., Cagle M. P., Chaparro P., Ketchum N. S. et al. Mycoplasma pneumoniae and health outcomes in children with asthma // Ann. Allergy Asthma Immunol. – 2017. ‒ Vol. 119, № 2. ‒ Р. 146-152. e2. DOI: 10.1016/j.anai.2017.05.022.
19. Ye Q., Mao J. H., Shu Q., Shang S. Q. Mycoplasma pneumoniae induces allergy by producing P1-specific immunoglobulin E // Ann. Allergy Asthma Immunol. – 2018. ‒ Vol. 121, № 1. ‒ Р. 90-97. DOI: 10.1016/j.anai.2018.03.014.
20. Yuan C., Min F. M., Ling Y. J., Li G., Ye H. Z., Pan J. H. et al. Clinical characteristics and antibiotic resistance of Mycoplasma pneumoniae pneumonia in hospitalized chinese children // Comb. Chem. High Throughput Screen. – 2018. ‒ Vol. 21, № 10. ‒ Р. 749-754. DOI: 10.2174/1386207322666190111112946.
Review
For citations:
Gorina L.G., Krylova N.А., Rakovskaya I.V., Goncharova S.А., Barkhatova O.I. Control tactics and evaluation of clinical efficacy of therapy in children with bronchial asthma associated with mycoplasma infection. Tuberculosis and Lung Diseases. 2021;99(5):35-41. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-5-35-41