Preview

Туберкулез и болезни легких

Расширенный поиск

Клофазимин: история и перспективы

https://doi.org/10.21292/2075-1230-2021-99-5-64-70

Аннотация

В обзоре представлен анализ 47 публикаций, прослеживающих путь клофазимина от открытия до признания препаратом группы В для лечения туберкулеза с множественной лекарственной устойчивостью. Приведены сведения о механизмах действия на микобактерии туберкулеза, особенностях фармакокинетики и профиле безопасности.

Об авторах

Г. Н., Можокина
ФГБУ «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Можокина Галина Николаевна, доктор медицинских наук, ведущий научный сотрудник лаборатории иммунопатологии и иммунодиагностики туберкулезной инфекции

127473, Москва, ул. Достоевского, д. 4, к. 2



А. Г. Самойлова
ФГБУ «Национальный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Самойлова Анастасия Геннадьевна, доктор медицинских наук, заместитель директора по научной работе

127473, Москва, ул. Достоевского, д. 4, к. 2



Список литературы

1. Кубанов А. А., Карамова А. Э., Воронцова А. А., Калинина П. А. Фармакотерапия лепры // Вестник дерматологии и венерологии. ‒ 2016. ‒ № 4. ‒ С. 12-19.

2. Ahmad N., Ahuja S. D., Akkerman O. W., Alffenaar J. C., Anderson L. F., Baghaei P., Bang D., Barry P. M. еt аl. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis // Lancet. ‒ 2018. ‒ № 392 (10150). ‒ Р. 821-834.

3. Ammerman N. C., Swanson R. V., Tapley A., Moodley C., Ngcobo B., Adamson J. еt аl. Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis both in vitro and in vivo // J. Antimicrob. Chemother. ‒ 2017. ‒ Vol. 72, № 2. ‒ Р. 455-461.

4. Anderson R., Theron A. J., Nel J. G., Durandt C., Cholo M. C., Feldman C., Tintinger G. R. Clofazimine, but Not Isoniazid or Rifampicin, Augments Platelet Activation in vitro // Front. Pharmacol. ‒ 2018. ‒ Vol. 20, № 9. ‒ Р. 1335.

5. Barry V. C., Belton J. G., Conalty M. L., Denneny J. M., Edward D. W., O’Sullivan J. F., Twomey D., Winder F. A new series of phenazines (rimino-compounds) with high antituberculosis activity // Nature. ‒ 1957. ‒ Vol. 179. – Р. 1013-1015.

6. Bezerra E. L., Vilar M. J, da Trindade Neto P. B. et al. Double-blind,randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus // Arthritis. Rheum. ‒ 2005. ‒ Vol. 52. ‒ Р. 3073-3078.

7. Bvumbi M. V. Activity of Riminophenazines against Mycobacterium tuberculosis: A Review of Studies that Might be Contenders for Use as Antituberculosis Agents // Chem. Med. Chem. ‒ 2020. ‒ Vol. 15, № 23. ‒ Р. 2207-2219.

8. Cahill C., Phelan J. J., Keane J. Understanding and exploiting the effect of tuberculosis antimicrobials on host mitochondrial function and bioenergetics // Front. Cell. Infect. Microbiol. ‒ 2020. ‒ Vol. 10. ‒ Р. 493

9. Cholo M. C., Steel H. C., Fourie P. B., Germishuizen W. A., Anderson R. Clofazimine: current status and future prospects // J. Antimicrob. Chemother. ‒ 2012. ‒ Vol. 67. ‒ Р. 290-298.

10. Choudhri S. H., Harris L, Butany J. W., Keystone J. S. Clofazimine induced cardiotoxicity ‒ a case report // Lepr. Rev. ‒ 1995. ‒ Vol. 66, № 1. ‒ Р. 63-68.

11. Dey T., Brigden G., Cox H., Shubber Z., Cooke G., Ford N. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis // J. Antimicrob. Chemother. ‒ 2013. ‒ Vol. 68, № 2. ‒ Р. 284-293.

12. Diacon A. H., Dawson R., von Groote-Bidlingmaier F., Symons G., Venter A., Donald P. R. et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline // Am. J. Respir. Crit. Care Med. ‒ 2015. ‒ Vol. 191, № 8. ‒ Р. 943-953.

13. Dooley K. E., Obuku E. A., Durakovic N., Belitsky V., Mitnick C., Nuermberger E. L. Efficacy Subgroup, RESIST-TB. World Health Organization group 5 drugs for the treatment of drug-resistant tuberculosis: unclear efficacy or untapped potential? // J. Infect. Dis. ‒ 2012. ‒ Vol. 207. ‒ Р. 1352-1358.

14. Driver E. R., Ryan G. J., Hoff D. R, Irwin S. M, Basaraba R. J., Kramnik I., Lenaerts A. J. Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis // Antimicrob. Agents Chemother. ‒ 2012. ‒ Vol. 56, № 6. ‒ Р. 3181-3195.

15. Faouzi M., Starkus J., Penner R. State-dependent blocking mechanism of Kv1. 3 channels by the antimycobacterial drug clofazimine // Brit. J. Pharmac. 2015. ‒ Vol. 172. ‒ Р. 5161-5173.

16. Global Alliance for TB Drug Development. Evaluation of early bactericidal activity in pulmonary tuberculosis with clofazimine, TMC207, PA-824, pyrazinamide (NC-003); NCT01691534. 2013. http://clinicaltrials.gov/ct2/show/NCT01691534.

17. Gopal M., Padayatchi N., Metcalfe J. Z., O'Donnell M R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis // Int. J. Tuberc. Lung Dis. ‒ 2013. ‒ Vol. 17, № 8. ‒ Р. 1001-1007.

18. Grosset J. H., Tyagi S., Almeida D. V., Converse P. J., Li S.-Y., Ammerman N. C., Bishai W. R., Enarson D., Trébucq A. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice // Am. J. Respir. Crit. Care Med. ‒ 2013. ‒ Vol. 188. ‒ Р. 608-612.

19. Hasenoehrl E. J., Wiggins T. J., Berney M. Bioenergetic inhibitors: antibiotic efficacy and mechanisms of action in Mycobacterium tuberculosis // Front. Cell. Infect. Microbiol. ‒ 2021. ‒ Vol. 10. ‒ Р. 611-683.

20. Holdiness M. R. Clinical pharmacokinetics of clofazimine: a review // Clin. Pharmacokinet. ‒ 1989. ‒ Vol. 16. ‒ Р. 74-85.

21. Hwang T. J., Dotsenko S., Jafarov A., Weyer K., Falzon D., Lunte K. et al. Safety and availability of clofazimine in the treatment of multidrug and extensively drug-resistant tuberculosis: analysis of published guidance and meta-analysis of cohort studies // BMJ. Open. ‒ 2014. ‒ Vol. 4, № 1. ‒ Р. e004143.

22. Irwin S. M., Gruppo V., Brooks E., Gilliland J., Scherman M., Reichlen M. J. et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas // Antimicrob. Agents Chemother. ‒ 2014. ‒ Vol. 58, № 7. ‒ Р. 4026-4034.

23. Jagannath C., Reddy M. V., Kailasam S., O’Sullivan J. F., Gangadharam P. R. Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis: in vitro, intracellular, and in vivo studies // Am. J. Respir. Crit. Care Med. ‒ 1995. ‒ Vol. 151. ‒ Р. 1083-1086.

24. Kaufmann S. H. E., Dorhoi A., Hotchkiss R. S., Bartenschlager R. Host-directed therapies for bacterial and viral infections // Nat. Rev. Drug Discov. ‒ 2018. ‒ Vol. 17. ‒ Р. 35-56.

25. Lan Z., Ahmad N., Baghaei P., Barkane L., Benedetti A., Brode S. K. et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis // Lancet Respir. Med. ‒ 2020. ‒ Vol. 8, № 4. ‒ Р. 383-394.

26. Leistikow R. L., Morton R. A., Bartek I. L., Frimpong I., Wagner K., Voskuil M. I. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy // J. Bacteriol. ‒ 2010. ‒ Vol. 192. ‒ Р. 1662-1670.

27. Li G., Xu Z., Jiang Y., Liu H., Zhao Li-Li , Li M. et al. Synergistic activities of clofazimine with moxifloxacin or capreomycin against Mycobacterium tuberculosis in China // Int. J. Antimicrob. Agents. ‒ 2019. ‒ Vol. 54, № 5. ‒ Р. 642-646.

28. Li S., Chan J. Y-W., Li Y., Bardelang D., Zheng J., Yew W. W. et al. Complexation of clofazimine by macrocyclic cucurbit[7]uril reduced its cardiotoxicity without affecting the antimycobacterial efficacy // Org. Biomol. Chem. ‒ 2016. ‒ Vol. 14, № 31. ‒ Р. 7563-7569.

29. Lu Y., Wang B., Zhao W., Zheng M., Li P., Fu L., Liang B. A study on the activity of clofazimine with antituberculous drugs against Mycobacterium tuberculosis // Zhonghua Jie He He Hu Xi Za Zhi. ‒ 2010. ‒ Vol. 33, № 9. ‒ Р. 675-678.

30. Maartens G., Brill M. J. E., Pandie M., Svensson E. M..Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis // Int. J. Tuberc. Lung Dis. ‒ 2018. ‒ Vol. 22, № 1. ‒ Р. 26-29.

31. Mirnejad R., Asadi A., Khoshnood S., Mirzaei H., Heidary M., Fattorini L., Ghodousi A., Darban-Sarokhalil D. Clofazimine: A useful antibiotic for drug-resistant tuberculosis // Biomed Pharmacother. ‒ 2018. ‒ Vol. 105. ‒ Р. 1353-1359.

32. Misra N., Padayatchi N., Naidoo P. Dose-related adverse events in South African patients prescribed clofazimine for drug-resistant tuberculosis // S. Afr. Med. J. 2019. ‒ Vol. 110, № 1. ‒ Р. 32-37.

33. Padayatchi N., Gopal M., Naidoo R., Werner L., Naidoo K., Master I., O'Donnell M. R. Clofazimine in the treatment of extensively drug-resistant tuberculosis with HIV coinfection in South Africa: a retrospective cohort study // J. Antimicrob. Chemother. ‒ 2014. ‒ Vol. 69, № 11. ‒ Р. 3103-3107.

34. Pérez-Verdaguer M., Capera J., Serrano-Novillo C., Estadella I., Sastre D., Felipe A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies // Expert. Opin. Ther. Targets. ‒ 2016. ‒ Vol. 20, № 5. ‒ Р. 577-591.

35. Ren Y. R., Pan F., Parvez S., Fleig A., Chong C. R., Xu J. et al. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes // PLoS One. ‒ 2008. ‒ Vol. 3. ‒ Р. e4009.

36. Rodríguez G., Pinto R., López F., Gómez Y. Persistent type 2 lepra reaction (erythema nodosum) and clofazimine-induced lethal enteropathy // Biomedica. ‒ 2009. ‒ Vol. 29, № 1. ‒ Р. 18-24.

37. Schaad-Lanyi Z., Dieterle W., Dubois J. P., Theobald W., Vischer W. Pharmacokinetics of clofazimine in healthy volunteers // Int. J. Lepr. Other Mycobact. Dis. ‒ 1987. ‒ Vol. 55. ‒ Р. 9-15.

38. Swanson R. V., Ammerman N. C., Ngcobo B., Adamson J., Moodley C., Dorasamy A. et al. Clofazimine contributes sustained antimicrobial activity after treatment cessation in a mouse model of tuberculosis chemotherapy // Antimicrob. Agents Chemother. ‒ 2016. ‒ Vol. 60, № 5. ‒ Р. 2864-2869.

39. Tang S., Yao L., Hao X, Liu Y., Zeng L., Liu G. et al. Clofazimine for the treatment of multidrug resistant tuberculosis: prospective, multicenter, randomized controlled study in China // Clin. Infect. Dis. ‒ 2015. ‒ Vol. 60, № 9. ‒ Р. 1361-1367.

40. Trexjnergy metabolism // J. Pharm. Sci. ‒ 2017. ‒ Vol. 106. ‒ Р. 1162-1174.

41. Tyagi S., Ammerman N. C., Li S.-Y., Adamson J., Converse P. J., Swanson R. V., Almeida D. V., Grosset J. H. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis // Proc. Natl. Acad. Sci. U S A. ‒ 2015. ‒ Vol. 112. ‒ Р. 869-874.

42. Van Deun, Maug A. K., Salim M. A., Das P. K., Sarker M. R., Daru P., Rieder H. L. Short, highly effective and inexpensive standardized treatment of multidrug-resistant tuberculosis // Am. J. Respir. Crit. Care Med. ‒ 2010. ‒ Vol. 182. ‒ Р. 684-692.

43. WHO consolidated guidelines on drug-resistant tuberculosis treatment ISBN 978-92-4-155052-9 © World Health Organization 2019.

44. Williams K., Minkowski A., Amoabeng O., Peloquin C. A., Taylor D., Andries K., Wallis R. S., Mdluli K. E., Nuermberger E. L. Sterilizing activities of novel combinations lacking first-and second-line drugs in a murine model of tuberculosis // Antimicrob. Agents Chemother. ‒ 2012. ‒ Vol. 56, № 6. – Р. 311-420.

45. Working Group on New TB Drugs. Riminophenazines. http://www.newtbdrugs.org/project.php.

46. Xu J., Wang B., Fu L., Zhu H., Guo S., Huang H. et al. In vitro and in vivo activities of the riminophenazine TBI-166 against Mycobacterium tuberculosis // Antimicrob. Agents Chemother. ‒ 2019. ‒ Vol. 63. ‒ Р. e02155-18.50.

47. Yano T., Kassovska-Bratinova S., Teh J. S., Winkler J., Sullivan K., Isaacs A. et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species // J. Biol..Chem. ‒ 2011. ‒ Vol. 286. – Р. 10276-10287.


Рецензия

Для цитирования:


Можокина Г.Н., Самойлова А.Г. Клофазимин: история и перспективы. Туберкулез и болезни легких. 2021;99(5):64-70. https://doi.org/10.21292/2075-1230-2021-99-5-64-70

For citation:


Mozhokina G.N., Samoylova A.G. Clofazimine: History and Perspectives. Tuberculosis and Lung Diseases. 2021;99(5):64-70. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-5-64-70

Просмотров: 4061


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)