Preview

Туберкулез и болезни легких

Расширенный поиск

Претоманид: клинические испытания и перспективы применения в схемах лечения туберкулеза с множественной и широкой лекарственной устойчивостью

https://doi.org/10.21292/2075-1230-2021-99-6-54-60

Полный текст:

Аннотация

В обзоре литературы рассмотрены 68 публикаций, рекомендации и руководства, посвященные клиническим испытаниям препарата претоманид для лечения больных с лекарственно-устойчивым туберкулезом. Согласно источникам литературы, комбинации претоманида с другими противотуберкулезными препаратами высокоэффективны и перспективны при лечении таких больных.

Об авторе

А. В. Кукурика
Городской противотуберкулезный диспансер г. Макеевки
Украина

Кукурика Анастасия Владимировна   – врач-фтизиатр.

Украина, г. Макеевка, ул. Сормовская, д. 7. 



Список литературы

1. Луговкина Т. К., Скорняков С. Н., Кильдюшева Е. И., Егоров Е. А. Современные подходы к поиску активных препаратов, схем и режимов химиотерапии туберкулеза // Туб. и болезни легких. – 2020. – Т. 98, № 6. – С. 60-69.

2. Наумов А. Г., Павлунин А. В. Стратегия борьбы с лекарственно-устойчивым туберкулезом: перспективные режимы химиотерапии (обзор литературы) // Вестник новых медицинских технологий. Электронное издание. – 2019. – № 5. – С. 57-65.

3. Ahmad Z., Peloquin C. A., Singh R. P., Derendorf H., Tyagi S., Ginsberg A., Grosset J. H., Nuermberger E. L. PA-824 exhibits time-dependent activity in a murine model of tuberculosis // Antimicrob. Agents Chemother. ‒ 2011. ‒ Vol. 55. ‒ P. 239-245.

4. Baptista R., Fazakerley D. M., Beckmann M., Baillie L., Mur L. A. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824) // Sci Rep. ‒ 2018. ‒ Vol. 8, № 1. ‒ P. 5084.

5. Bigelow K. M., Tasneen R., Chang Y. S., Dooley K. E., Nuermberger E. L. Preserved efficacy and reduced toxicity with intermittent Linezolid dosing in combination with Bedaquiline and Pretomanid in a murine tuberculosis model // Antimicrob. Agents Chemother. ‒ 2020. ‒ Vol. 64, № 10. ‒ P. 1178-1120.

6. Choi K. P., Kendrick N., Daniels L. Demonstration that fbiC is required by Mycobacterium bovis BCG for coenzyme F(420) and FO biosynthesis //J. Bacteriol. ‒ 2002. ‒ Vol. 184. ‒ P. 2420-2428.

7. ClinicalTrials.gov. A Phase 2 to evaluate the efficacy, safety and tolerability of combinations of Bedaquiline, Moxifloxacin, PA-824 and Pyrazinamide in adult subjects with drug-sensitive or multi drug-resistant pulmonary tuberculosis. (NC-005) Bethesda (MD): National Library of Medicine (US); 2000.

8. ClinicalTrials.gov. A Phase 3 study assessing the safety and efficacy of Bedaquiline Plus PA-824 Plus Linezolid in Subjects with drug resistant pulmonary tuberculosis. Bethesda (MD): National Library of Medicine (US); 2000.

9. ClinicalTrials.gov. Evaluation of 8 weeks of treatment with the combination of Moxifloxacin, PA-824 and Pyrazinamide in patients with drug sensitive and multi drug-resistant pulmonary tuberculosis (TB) (NC-002). Bethesda (MD): National Library of Medicine (US); 2000.

10. ClinicalTrials.gov. Evaluation of early bactericidal activity in pulmonary tuberculosis with Clofazimine (C)-TMC207 (J)-PA-824 (Pa)-Pyrazinamide (Z) (NC-003). Bethesda (MD): National Library of Medicine (US); 2000.

11. ClinicalTrials.gov. Pragmatic clinical trial for a more effective concise and less toxic MDR-TB Treatment Regimen(s) (TB-PRACTECAL) Bethesda (MD): National Library of Medicine (US); 2000.

12. ClinicalTrials.gov. Shortening treatment by advancing novel drugs (STAND). Bethesda (MD): National Library of Medicine (US); 2000.

13. ClinicalTrials.gov. Trial to evaluate the efficacy, safety and tolerability of BPaMZ in drug-sensitive (DS-TB) adult patients and drug-resistant (DR-TB) adult patients. Bethesda (MD): National Library of Medicine (US); 2000.

14. Conradie F., Diacon A. H., Ngubane N., Howell P., Everitt D., Crook A. M., Mendel C. M., Egizi E., Moreira J., Timm J., McHugh T. D., Wills G. H., Bateson A., Hunt R., Van Niekerk C., Li M., Olugbosi M., Spigelman M. Treatment of highly drug-resistant pulmonary tuberculosis // New Engl. J. Med. ‒ 2020. ‒ Vol. 382, № 10. ‒ P. 892-902.

15. Conradie, F., Diacon A. H., Everitt D., Mendel C., Van Niekerk C., Howell P., Comins K., Spigelman M. The NIX-TB trial of Pretomanid, Bedaquiline and Linezolid to treat XDR-TB. In Conference on retroviruses and opportunistic infections (CROI), 2017. ‒ P. 13-16.

16. Dawson R., Diacon A. H., Everitt D., Christo van Niekerk, Donald P. R., Burger D. A., Schall R., Spigelman M., Conradie A., Eisenach K., Venter A., Ive P., Page-Shipp L., Variava E., Reither K., Ntinginya N. E., Pym A., Groote-Bidlingmaier F., Mendel C. M. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis // Lancet. ‒ 2015. ‒ Vol. 385. ‒ P. 1738-1747.

17. Dawson R., Diacon A. PA-824, moxifloxacin and pyrazinamide combination therapy for tuberculosis // Expert. Opin. Investig. Drugs. ‒ 2013. ‒ Vol. 22. ‒ P. 927-932.

18. Dawson R., Harris K., Conradie A., Burger D., Murray S., Mendel C. et al. Efficacy of Bedaquiline, Pretomanid, Moxifloxacin & PZA (BPAMZ) Against DS- & MDR-TB. Conference on Retroviruses and Opportunistic Infections; Seattle, Washington: 2017.

19. De Miranda Silva C., Hajihosseini A., Myrick J., Nole J., Louie A., Schmidt S., Drusano G. L. Effect of Moxifloxacin plus Pretomanid againstMycobacterium tuberculosis in log phase, acid phase, and nonreplicating-persister phase in an in vitro assay // Antimicrob. Agents. Chemother. ‒ 2018. ‒Vol. 63, №1. ‒ P. 1695-1618.

20. Diacon A. H., Dawson R., du Bois J., Narunsky K., Venter A., Donald P. R., van Niekerk C., Erondu N., Ginsberg A. M., Becker P. Phase II dose-ranging trial of the early bactericidal activity of PA-824 // Antimicrob. Agents. Chemother. ‒ 2012. ‒ Vol. 56. ‒ P. 3027-3031.

21. Diacon A. H., Dawson R., Hanekom M., Narunsky K., Maritz S. J., Venter A., Donald P. R., van Niekerk C., Whitney K., Rouse D. J., et al. Early bactericidal activity and pharmacokinetics of PA-824 in smearpositive tuberculosis patients // Antimicrob. Agents. Chemother. ‒ 2010. ‒ Vol. 54. ‒ P. 3402-3407.

22. Diacon A. H., Dawson R., von Groote-Bidlingmaier F., Symons G., Venter A., Donald P. R., Niekerk C., Everitt D., Winter H., Becker P., Hutchings J., Burger D. A., Schall R., Mendel C. M. K. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline //Am. J. Respir. Crit. Care Med. ‒ 2015. ‒ Vol. 191, № 8. ‒ Р. 943-953.

23. Dogra M., Palmer B. D., Bashiri G., Tingle M. D., Shinde S. S., Anderson R. F., O'Toole R., Baker E. N., Denny W. A., Helsby N. A. Comparative bioactivation of the novel anti-tuberculosis agent PA-824 in Mycobacteria and a subcellular fraction of human liver // Br. J. Pharmacol. ‒ 2011. ‒ Vol. 162, № 1. ‒ P. 226-236.

24. Dooley K. E., Luetkemeyer A. F., Park J., Allen R., Cramer Y., Murray S., Sutherland D., Aweeka F., Koletar S. L., Marzan F., Bao J., Savic J., Haas D. W. Phase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampin // Antimicrob. Agents. Chemother. ‒ 2014. ‒ Vol. 58, № 9. ‒ P. 5245-5252.

25. FDA Briefing Document. Pretomanid Tablet, 200 mg. Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC). 2019.

26. Furin J., Alirol E., Allen E., Fielding K., Merle C., Abubakar I., Andersen J., Davies G., Dheda K., Diacon A., Dooley K. E., Dravnice G., Eisenach K., Everitt D., Ferstenberg D., Goolam-Mahomed A., Grobusch M. P., Gupta R., Harausz E., Harrington M., Horsburgh C. R., Lienhardt C., McNeeley D., Mitnick C. D., Nachman S., Nahid P., Nunn A. J., Phillips P., Rodriguez C., Shah S., Wells C., Thomas-Nyang'wa B., du Cros P. Drug-resistant tuberculosis clinical trials: proposed core research definitions in adults // Int. J. Tuberc. Lung. Dis. ‒ 2016. ‒ Vol. 20, № 3. ‒ P. 290-924.

27. Garcia-Contreras L., Sung J. C., Muttil P., Padilla D., Telko M., Verberkmoes J. L., Elbert K. J., Hickey A. J., Edwards D. A. Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs // Antimicrob. Agents. Chemother. ‒ 2010. ‒ Vol. 54. ‒ P. 1436-1442.

28. Ginsberg A. M., Laurenzi M. W., Rouse D. G., Whitney K. D., Spigelman M. K. Assessment of the effects of the nitroimidazo-oxazine PA-824 on renal function in healthy subjects // Antimicrob. Agents. Chemother. ‒2009. ‒ Vol. 53, № 9. ‒ P. 3726-3733.

29. Ginsberg A. M., Laurenzi M. W., Rouse D. G., Whitney K. D., Spigelman M. K. Safety, tolerability, and pharmacokinetics of PA-824 in healthy subjects // Antimicrob. Agents. Chemother. ‒ 2009. ‒ Vol. 53, № 9. ‒ P. 3720-3725.

30. Global tuberculosis report 2020. Geneva: World Health Organization, 2020.

31. Guglielmetti L. New drugs in the pipeline for the treatment of MDR-TB. ECCMID, 2019.

32. Haver H. L., Chua A., Ghode P. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. ‒ 2015. ‒ Vol. 59, № 9. ‒ P. 5316-5323.

33. Honeyborne I., Lipman M., Zumla A., McHugh T. D. The changing treatment landscape for MDR/XDR-TB – сan current clinical trials revolutionise and inform a brave new world? // Intern. J. Infect. Dis. ‒ 2019. ‒ Vol. 80. ‒ P. 23-28.

34. Hu M., Fu L., Wang B., Xu J., Guo S., Zhao J.., Li Y, Chen X., Lu Y. Genetic and virulence characteristics of Linezolid and Pretomanid dual drug-resistant strains induced from Mycobacterium tuberculosis in vitro // Infect. Drug. Resist. ‒ 2020. ‒ Vol. 13. ‒ P. 1751-1761.

35. Janssen. SIRTURO (bedaquiline) prescribing information. 2018.

36. Keam S. J. Pretomanid: First Approval. Drugs, 2019. ‒ Vol. 79, № 16. ‒ Р. 1797-1803.

37. Lenaerts A. J., Gruppo V., Marietta K. S., Johnson C. M., Driscoll D. K., Tompkins N. M., Rose J. D., Reynolds R. C., Orme I. M. Preclinical Testing of the Nitroimidazopyran PA-824 for Activity against Mycobacterium tuberculosis in a series of in vitro and in vivo Models // Antimicrob. Agents Chemother. ‒ 2005. ‒ Vol. 49, № 6. ‒ P. 2294-2301.

38. Li H., Salinger D. H., Everitt D., Li M., Del Parigi A., Mendel C., Nedelman J. R. Long-Term effects on QT prolongation of Pretomanid alone and in combinations in patients with tuberculosis // Antimicrob. Agents. Chemother. ‒ 2019. ‒ Vol. 63, № 10. ‒ P. 445-419.

39. Li M., Saviolakis G. A., El-Amin W., Makhene M. K., Osborn B., Nedelman J., Yang T. J., Everitt D. Phase 1 Study of the Effects of the tuberculosis treatment Pretomanid, alone and in combination with Moxifloxacin, on the QTc interval in healthy volunteers // Clin. Pharmacol. Drug. Dev. ‒ 2020. ‒ P. 1-13.

40. Lyons M. A. Modeling and simulation of Pretomanid pharmacodynamics in pulmonary tuberculosis patients // Antimicrob. Agents. Chemother. ‒ 2019. ‒Vol. 63, № 12. ‒ P. 732-719.

41. Manjunatha U. H., Boshoff H., Dowd C. S. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis // Proc. Natl. Acad. Sci. USA. ‒ 2006. ‒ Vol. 103, № 2. ‒ P. 431-436.

42. Manjunatha U., Boshoff H. I., Barry C. E. The mechanism of action of PA-824: Novel insights from transcriptional profiling // Commun. Integr. Biol. ‒ 2009. ‒ Vol. 2, № 3. ‒ P. 215-218.

43. Mashalidis E. H., Gittis A. G., Tomczak A., Abell C., Barry C. E. 3rd, Garboczi D. N. Molecular insights into the binding of coenzyme F420 to the conserved protein Rv1155 from Mycobacterium tuberculosis Protein Sci. ‒ 2015. ‒ Vol. 24, № 5. ‒ P. 729-740.

44. Murray S., Mendel C., Spigelman M. TB Alliance regimen development for multidrug-resistant tuberculosis // Intern. J. Tuberc. Lung Dis. ‒ 2016. ‒ Vol. 20. ‒ Р. 38-41.

45. Nagarajan K., Shankar R.G., Rajappa S., Shenoy S.J., Costa-Pereira R. Nitroimidazoles. XXI. 2,3-Dihydro-6-nitroimidazo[2,1-b]oxazoles with antitubercular activity // Eur. J. Med. Chem. ‒ 1989. ‒ Vol. 24. ‒ Р. 631-633.

46. Nuermberger E., Rosenthal I., Tyagi S., Williams K. N., Almeida D., Peloquin C. A., Bishai W. R., Grosset J. H. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis // Antimicrob. Agents. Chemother. ‒ 2006. ‒ Vol. 50, № 8. ‒ Р. 2621-2625.

47. Nuermberger E., Tyagi S., Tasneen R., Williams K. N., Almeida D., Rosenthal I., Grosset J. H. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis // Antimicrob. Agents. Chemother. ‒ 2008. ‒ Vol. 52. ‒ Р. 1522-1524.

48. Pfizer. ZYVOX (linezolid) prescribing information. 2018.

49. Salinger D. H., Subramoney V., Everitt D., Nedelman J. R. Population Pharmacokinetics of the Antituberculosis Agent Pretomanid // Antimicrob. Agents. Chemother. ‒ 2019. ‒ Vol. 63, № 10. ‒ Р. 907-919.

50. Showalter H. D. Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles to Treat Tuberculosis and Neglected Tropical Diseases // Molecules. ‒ 2020. ‒ Vol. 25, № 18. ‒ Р. 4137.

51. Silva D. R., Dalcolmo M., Tiberi S., Arbex M. A., Munoz-Torrico М., Duarte R., D’Ambrosio L., Visca D., Rendon A., Gaga M., Zumla А., Migliori G. B. New and repurposed drugs to treat multidrug- and extensively drug-resistant tuberculosis // J. Bras. Pneumol. ‒ 2018. ‒ Vol. 44, № 2. ‒ Р. 153-160.

52. Singh R., Manjunatha U., Boshoff H. I. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release // Science. ‒ 2008. ‒ Vol. 322. ‒ Р. 1392-1395.

53. Srivastava S., Deshpande D., Magombedze G., van Zyl J., Cirrincione K., Martin K., Bendet P., Berg A., Hanna D., Romero K., Hermann D., Gumbo T. Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics // J. Antimicrob. Chemother. ‒ 2020. ‒ Vol. 75, № 2. ‒ Р. 392-399.

54. Stover C. K., Warrener P., VanDevanter D. R., Sherman D. R., Arain T. M., Langhorne M. H., Anderson S. W., Towell J. A., Yuan Y., McMurray D. N., Kreiswirth B. N., Barry C. E., Baker W. R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis // Nature. ‒ 2000. ‒Vol. 405. ‒ Р. 962-966.

55. Tasneen R., Tyagi S., Williams K., Grosset J., Nuermberger E. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis // Antimicrob. Agents. Chemother. ‒ 2008. ‒ Vol. 52, № 10. ‒ Р. 3664-3668.

56. Tasneen R., Williams K., Amoabeng O., Minkowski A., Mdluli K. E., Upton A. M., Nuermberger E. L. Contribution of the nitroimidazoles PA-824 andTBA-354 to the activity of novel regimens in murine models of tuberculosis// Antimicrob. Agents. Chemother. ‒ 2015. ‒ Vol. 59. ‒ Р. 129-135.

57. TB Alliance. Pretomanid and BPaL Regimen for Treatment of Highly Resistant Tuberculosis. Oral presentation at: Antimicrobial Drugs Advisory Committee, 2019, Silver Spring, MD.

58. TB Alliance. Pretomanid. Sponsor briefing document antimicrobial drugs advisory committee. 2019.

59. Thompson A. M., Bonnet M., Lee H. H., Franzblau S. G., Wan B., Wong G. S., Cooper C. B., Denny W. A. Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid. ACS Med Chem Lett, 2017. ‒ Vol. 8, № 12. ‒ Р. 1275-1280.

60. Tiberi S., Munoz-Torrico M., Duarte R. New drugs and perspectives for new anti-tuberculosis regimens // Pulmonology. ‒ 2018. ‒ Vol. 24, № 2. ‒ Р. 86-98.

61. Tweed С. D., Dawson R., Burger D. A., Conradie A., Crook A. M., Mendel C. M., Conradie F., Diacon A. H., Ntinginya N. E., Everitt D. E., Haraka F., Li M., van Niekerk C. H., Okwera A., Rassool M. S., Reither K., Sebe M. A., Staples S., Variava E., Spigelman M. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial // Lancet. Respir. Med. ‒ 2019. ‒ Vol. 7, №12. ‒ Р.1048-1058.

62. Tyagi S., Nuermberger E., Yoshimatsu T., Williams K., Rosenthal I., Lounis N., Bishai W., Grosset J. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis // Antimicrob. Agents. Chemother. ‒ 2005. ‒ Vol. 49, № 6. ‒ Р. 2289-2293.

63. Wallis R. S., Maeurer M., Mwaba P. Tuberculosis – advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers // The Lancet. Infectious Diseases. ‒ 2016. ‒ Vol. 16, № 4. ‒ Р. 34-46.

64. Wen S., Jing W., Zhang T., Zong Z., Xue Y., Shang Y., Wang F., Huang H., Chu N., Pang Y. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis // Eur. J. Clin. Microbiol. Infect. Dis. ‒ 2019. ‒ Vol. 38, № 7. ‒ Р. 1293-1296.

65. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2019.

66. WHO consolidated guidelines on tuberculosis, module 4: treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020.

67. Xu J., Li S. Y., Almeida D. V., Tasneen R., Barnes-Boyle K., Converse P. J., Upton A. M., Mdluli K., Fotouhi N., Nuermberger E. L. Contribution of pretomanid to novel regimens containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in murine models of tuberculosis // Antimicrob. Agents. Chemother. ‒ 2019. ‒ Vol. 63, № 5. ‒ P. 19-21.

68. Zhang F., Li S., Wen S., Zhang T., Shang Y., Huo F., Xue Y., Li L., Pang Y. Comparison of in vitro Susceptibility of Mycobacteria Against PA-824 to Identify Key Residues of Ddn, the Deazoflavin-Dependent Nitroreductase from Mycobacterium tuberculosis // Infect. Drug. Resist. ‒ 2020. ‒ Vol. 13. ‒ P. 815-822.


Для цитирования:


Кукурика А.В. Претоманид: клинические испытания и перспективы применения в схемах лечения туберкулеза с множественной и широкой лекарственной устойчивостью. Туберкулез и болезни легких. 2021;99(6):54-60. https://doi.org/10.21292/2075-1230-2021-99-6-54-60

For citation:


Kukurika A.V. Pretomanid: Clinical Trials and Prospects to Be Used in Treatment Regimens for Multiple and Extensive Drug Resistant Tuberculosis. Tuberculosis and Lung Diseases. 2021;99(6):54-60. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-6-54-60

Просмотров: 68


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)