Quantitative Analysis of SARS-CoV-2 Viral Load in the Lungs of COVID-19 Deceased Patients
https://doi.org/10.21292/2075-1230-2021-99-11-7-15
Abstract
The objective: to perform quantitative analysis of SARS-CoV-2 viral load (VL) levels in lung tissues in deceased patients with COVID-19 and to evaluate its association with the nature of histological changes in the lungs and the duration of stay in ICU till the lethal outcome.
Subjects and Methods. Sections of formalin-fixed and paraffin-embedded lung tissues of 36 deceased patients with COVID-19 were used. The SARS-CoV-2 viral load was quantitatively assessed using the original qPCR. VL was calculated using the following formula: copies SARS-CoV-2 / copies ABL1 × 100, expressed as the ratio of the true number of SARS-CoV-2 cDNA copies per 100 copies of ABL1 gene cDNA.
Results. In cases with no histological changes typical of diffuse alveolar lung injury (DAI), the detection rate of SARS-CoV-2 RNA and the average level of the SARS-CoV-2 viral load were 62.5% (5 out of 8 observations) and 104.75 (range 0-313) copies of SARS-CoV-2 cDNA per 100 copies of human ABL1 gene cDNA. The average level of the SARS-CoV-2 viral load in the lungs with prevailing histological changes characteristic of the proliferative and exudative phases of DAI differed by 60 times and amounted to 909 (18-2,657) and 54,924 (834-250,281) copies of SARS-CoV-2 cDNA per 100 copies of human ABL1 cDNA, respectively. The average duration of stay in the intensive care unit in the group of patients with exudative and proliferative phases of DAI was 10.64 (1-22) and 8.14 (1-21) bed-days, respectively. The detection rate of the SARS-CoV-2 RNA in patients with diffuse alveolar lung injury was 100%.
About the Authors
A. A. OdilovRussian Federation
Akmalzhon A. Odilov – Resident Physician of Pathological Anatomy Department of Medical Institute.
6, Miklukho-Maklaya St., Moscow, 117198.
A. A. Volkov
Russian Federation
Aleksey V. Volkov – Doctor of Medical Sciences, Associate Professor of Pathological Anatomy Department of Medical Institute.
6, Miklukho-Maklaya St., Moscow, 117198.
A. O. Аbdullaev
Russian Federation
Adkhamzhon O. Аbdullaev – Candidate of Medical Sciences, Senior Researcher of Molecular Hematology Laboratory.
4, Novy Zykovskiy Drive, Moscow, 125167
A. B. Sudarikov
Russian Federation
Andrey B. Sudarikov – Doctor of Biological Sciences, Head of Molecular Hematology Laboratory.
4, Novy Zykovskiy Drive, Moscow, 125167.
I. I. Babichenko
Russian Federation
Igor I. Babichenko – Doctor of Medical Sciences, Professor, Head of Pathological Anatomy Department of Medical Institute.
6, Miklukho-Maklaya St., Moscow, 117198.
References
1. Samsonova M.V., Chernyaev А.L., Omarova Zh.R., Pershina E.А., Mishnev O.D., Zayratyants O.V., Mikhaleva L.M., Kalinin D.V., Varyasin V.V., Tishkevich O.А., Vinogradov S.А., Mikhaylichenko K.Yu., Chernyak А.V. Specific pathological anatomical parameters of the lungs in COVID-19. Pulmonologiya, 2020, vol. 30, no. 5, pp. 519-532. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-5-519-532.
2. Abdulrahman A., Mallah S.I., Alqahtani M. COVID-19 viral load not associated with disease severity: findings from a retrospective cohort study. BMC Infect. Dis., 2021, no. 21, pp. 688. https://doi.org/10.1186/s12879-021-06376-1.
3. Adachi T., Chong J.M., Nakajima N. et al. Clinicopathologic and immunohistochemical findings from autopsy of patient with COVID-19, Japan. Emerg. Infect. Dis., 2020, vol. 26, no. 9, pp. 2157-2161. doi:10.3201/eid2609.201353.
4. Aquino-Jarquin G. The raw cycle threshold values from reverse-transcription polymerase chain reaction detection are not viral load quantitation units. Clin. Infect. Dis., 2021, vol. 72, no. 8, pp. 1489-1490. doi:10.1093/cid/ciaa830.
5. Biguenet A., Bouiller K., Marty-Quinternet S., Brunel A.S., Chirouze C., Lepiller Q. SARS-CoV-2 respiratory viral loads and association with clinical and biological features. J. Med. Virol., 2021, vol. 93, no. 3, pp. 1761-1765. doi:10.1002/jmv.26489.
6. Borczuk A.C. Pulmonary pathology of COVID-19: a review of autopsy studies. Curr. Opin. Pulm. Med., 2021, vol. 27, no. 3, pp. 184-192. doi:10.1097/MCP.0000000000000761.
7. Bradley B.T., Maioli H., Johnston R. et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series [published correction appears in Lancet. 2020 Aug 1;396(10247):312]. Lancet, 2020, vol. 396 (10247), pp. 320-332. doi:10.1016/S0140-6736(20)31305-2.
8. Dahdouh E., Lázaro-Perona F., Romero-Gómez M.P., Mingorance J., García-Rodriguez J. Ct values from SARS-CoV-2 diagnostic PCR assays should not be used as direct estimates of viral load. J. Infect., 2021, vol. 82, no. 3, pp. 414-451. doi:10.1016/j.jinf.2020.10.017.
9. Duarte-Neto A.N., Monteiro R.A.A., da Silva L.F.F. et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology, 2020, vol. 77, no. 2, pp. 186-197. doi:10.1111/his.14160.
10. Heinrich F., Sperhake J.P., Heinemann A. et al. Germany's first COVID-19 deceased: a 59-year-old man presenting with diffuse alveolar damage due to SARS-CoV-2 infection. Virchows Arch, 2020, vol. 477, pp. 335-339.
11. Hirschbühl K., Dintner S., Beer M. et al. Viral mapping in COVID-19 deceased in the Augsburg autopsy series of the first wave: A multiorgan and multimethodological approach. PLoS One, 2021, vol. 16, no. 7, pp. e0254872. Published 2021 Jul 19. doi:10.1371/journal.pone.0254872.
12. Machado A., Salvador P., Oliveira P. et al. The impact of SARS-CoV-2 viral load on the mortality of hospitalized patients: a retrospective analysis. Cureus, 2021, vol. 13, no. 7, pp. e16540. doi:10.7759/cureus.16540.
13. Magleby R., Westblade L.F., Trzebucki A., Simon M.S., Rajan M., Park J. et al. Impact of SARS-CoV-2 viral load on risk of intubation and mortality among hospitalized patients with coronavirus disease 2019. Clin. Infect. Dis., 2020. doi: 10.1093/cid/ciaa851 [Epub ahead of print].
14. Massoth L.R., Desai N., Szabolcs A. et al. Comparison of RNA in situ hybridization and immunohistochemistry techniques for the detection and localization of SARS-CoV-2 in human tissues. Am. J. Surg. Pathol., 2021, vol. 45, no. 1, pp. 14-24. doi:10.1097/PAS.0000000000001563.
15. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T. et al. Multiorgan and renal tropism of SARS-CoV-2. N. Engl. J. Med., 2020, vol. 383, no. 6, pp. 590-592. doi:10.1056/NEJMc2011400.
16. Pujadas E., Chaudhry F., McBride R., Richter F., Zhao S., Wajnberg A., Nadkarni G., Glicksberg B. S., Houldsworth J., Cordon-Cardo C. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med., 2020, vol. 8, no. 9, pp. e70.
17. Rao S.N., Manissero, D., Steele V.R., Pareja J. A narrative systematic review of the clinical utility of cycle threshold values in the context of COVID-19. Infect. Dis. Ther., 2020, vol. 9, pp. 573-586. doi: 10.1007/s40121-020-00324-3.
18. Sauter J.L., Baine M.K., Butnor K.J. et al. Insights into pathogenesis of fatal COVID-19 pneumonia from histopathology with immunohistochemical and viral RNA studies. Histopathology, 2020.
19. Schaller T., Hirschbuhl K., Burkhardt K. et al. Postmortem examination of patients with COVID-19. JAMA, 2020, vol. 323, pp. 2518-2520.
20. Schnuriger A., Perrier M., Marinho V. et al. Caution in interpretation of SARS-CoV-2 quantification based on RT-PCR cycle threshold value. Diagn. Microbiol. Infect. Dis., 2021, vol. 100, no. 3, pp. 115366. doi:10.1016/j. diagmicrobio.2021.115366.
21. Sekulic M., Harper H., Nezami B.G. et al. Molecular Detection of SARS-CoV-2 Infection in FFPE samples and histopathologic findings in fatal SARS-CoV-2 cases. Am. J. Clin. Pathol., 2020, vol. 154, no. 2, pp. 190-200. doi:10.1093/ajcp/aqaa091.
22. Tian S., Xiong Y., Liu H. et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. ModPathol., 2020, vol. 33, no. 6, pp. 1007-1014. doi:10.1038/s41379-020-0536-x.
23. Trunfio M., Venuti F., Alladio F. et al. Diagnostic SARS-CoV-2 cycle threshold value predicts disease severity, survival, and six-month sequelae in COVID-19 symptomatic patients. Viruses, 2021, vol. 13, no. 2, pp. 281. Published 2021 Feb 11. doi:10.3390/v13020281.
24. WHO Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Interim guidance. Jan 17, 2020. https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117.
25. Wong D.W.L., Klinkhammer B.M., Djudjaj S. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells, 2021, vol. 10, no. 8, pp. 1900. Published 2021 Jul. 27. doi:10.3390/cells10081900.
26. Yu F., Yan L., Wang N. et al. Quantitative detection and viral load analysis of SARS-CoV-2 in infected patients. Clin. Infect. Dis., 2020, vol. 71, no. 15, pp. 793-798. doi:10.1093/cid/ciaa345.
27. Yu X., Sun S., Shi Y., Wang H., Zhao R., Sheng J. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit. Care, 2020, vol. 24, no. 1, pp. 170. Published 2020 Apr. 23. doi:10.1186/s13054-020-02893-8.
Review
For citations:
Odilov A.A., Volkov A.A., Аbdullaev A.O., Sudarikov A.B., Babichenko I.I. Quantitative Analysis of SARS-CoV-2 Viral Load in the Lungs of COVID-19 Deceased Patients. Tuberculosis and Lung Diseases. 2021;99(11):7-15. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-11-7-15