Диагностика активности туберкулезной инфекции методами транскрипционного анализа
https://doi.org/10.21292/2075-1230-2021-99-12-57-64
Аннотация
В обзоре приводятся данные из 54 источников литературы. Транскрипционный анализ клеток периферической крови человека позволяет выявить молекулярные механизмы регуляции течения туберкулеза. Особое значение исследователи придают интерферон-индуцируемым генам. При активном туберкулезе, наряду с повышенной экспрессией интерферон-индуцируемых генов, наблюдаются активация генов воспаления в миелоидных клетках и снижение активации генов, определяющих функционирование B- и Т-лимфоцитов. Профиль экспрессии генов соотносится с рентгенологической картиной заболевания у конкретного пациента. Выявлено снижение экспрессии интерферон-индуцируемых генов на фоне успешного лечения туберкулеза. Профиль экспрессии генов, характерный для пациентов с активным туберкулезом, не совпадает с таковым у большинства людей с латентной туберкулезной инфекцией.
Об авторах
Э. И. РубаковаРоссия
Рубакова Эльвира Ивановна, кандидат биологических наук, старший научный сотрудник лаборатории иммуногенетики.
107564, Москва, Яузская аллея, д. 2.
Тел.: +7 (499) 785-90-72.
Т. К. Кондратьева
Россия
Кондратьева Татьяна Константиновна, доктор биологических наук, ведущий научный сотрудник лаборатории иммуногенетики.
107564, Москва, Яузская аллея, д. 2.
Тел.: +7 (499) 785-90-72.
А. С. Апт
Россия
Апт Александр Соломонович, руководитель лаборатории иммуногенетики.
107564, Москва, Яузская аллея, д. 2.
Тел.: +7 (499) 785-90-72.
Список литературы
1. Apt A. S., Logunova N. N., Kondratieva T. K. Host genetics in susceptibility to and severity of mycobacterial diseases // Tuberculosis (Edinb). – 2017. ‒ Vol. 106. ‒ P. 1-8.
2. Berry M. P. R., Graham C. M., McNab F. W. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis // Nature. ‒ 2010. ‒ Vol. 466. – P. 973-977.
3. Blankley S., Graham C. M., Turneret J. et al. A 380-gene meta-signature of active tuberculosis compared with healthy controls // Eur. Respir J. ‒ 2016. ‒ Vol. 7. ‒ P. 1873-1876.
4. Blankley S., Graham C. M., Turner J. et al. The transcriptional signature of active tuberculosis reflects symptom status in extra-pulmonary and pulmonary tuberculosis // PLoS One. – 2016. – Vol. 11, № 10. ‒ Р. 162220.
5. Bloom C. I., Graham C. M., Berry M. P. et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy // PLoS One. – 2012. ‒ Vol. 7, № 10. ‒ Р. e46191.
6. Bloom C. I., Graham C. M., Berry M. P. et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers // PLoS One. ‒ 2013. ‒ Р. 8, № 8. ‒ Р. e70630.
7. Casanova J. L., Abel L. Genetic dissection of immunity to mycobacteria: the human model // Annu. Rev. Immunol. – 2002. ‒ Vol. 20. ‒ P. 581-620.
8. Chakravanty S. D., Zhu G., Tsai M. C. et al. Tumor necrosis factor blockade in chronic murine tuberculosis tnhances granulomatous inflammation and disorganizes granulomas in the lungs // Infection. Immunol. – 2008. ‒ Vol. 76. ‒ P. 916-926.
9. Cliff J. M., Lee J. S., Constantinou N., Cho J. E. et al. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response // J. Infect Dis. – 2013. ‒ Vol. 207, № 1. ‒ P. 18-29.
10. Cliff J. M., Kaufmann S. H., McShane H. et al. The human immune response to tuberculosis and its treatment: a view from the blood // Immunol. Rev. – 2015. ‒ Vol. 264. ‒ P. 88-102.
11. Cooper A. M. Cell-mediated immune responses in tuberculosis // Annu. Rev. Immunol. – 2009. ‒ Vol. 27. ‒ P. 393-422.
12. Donovan M. L., Schultz T. E., Duke T. J, Blumenthal A. Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences // Front. Immunol. ‒ 2017. ‒ Vol. 27 – P. 1-16.
13. Dorhoi A., Iannaccone M., Maertzdorf J. et al. Reverse translation in tuberculosis: neutrophils provide clues for understanding development of active disease // Front. Immunol. ‒ 2014. ‒ Vol. 5. ‒ P. 1-8.
14. Dorhoi A., Yeremeev V., Nouailles G. et al. Type I IFN signaling triggers immunopathology in tuberculosis-susceptible mice by modulating lung phagocyte dynamics // Eur. J. Immunol. ‒ 2014. ‒ Vol. 44, № 8. ‒ P. 2380-2393.
15. Eruslanov E. B., Lyadova I. V., Kondratieva T. K. et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice // Infect. Immun. – 2005. ‒ Vol. 73, № 3. ‒ P. 1744-1753.
16. Esmail H., Lai R. P., Lesosky M. et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography // Nat. Med. – 2016. ‒ Vol. 22 – P. 1090-1093.
17. Esmail H., Lai R. P., Lesosky M. et al. Complement pathway gene activation and rising circulating immune complexes characterize early disease in HIV-associated tuberculosis // Proc. Natl. Acad. Sci. U S A. ‒ 2018. ‒ Vol. 115. ‒ P. E964-E973.
18. Eum S. Y., Kong J. H., Hong M. S. et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB // Chest. ‒ 2010. ‒ Vol. 137, № 1. ‒ P. 122-128.
19. Goyal S., Klassert T. E., Slevogt H. C-type lectin receptors in tuberculosis: what we know // Med. Microbiol. Immunol. – 2016. ‒ Vol. 205, № 6. ‒ P. 513-535.
20. Huang C. N., Lee L. N., Ho C. C. et al. High serum level of procalcitonin and sTREM correlated with poor prognosis in pulmonary TB // J. Infect. ‒ 2014. ‒ Vol. 68, № 5. ‒ P. 440-447.
21. Ishikawa E., Mori D., Yamasaki S. Recognition of mycobacterial lipids by immune receptors // Trends Immunol. – 2017. ‒ Vol. 38, № 1. ‒ P. 66-76.
22. Jacobsen M. et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis // J. Mol. Med. ‒ 2007. ‒ Vol. 85. ‒ P. 613-621.
23. Jacobsen M. et al. Suppressor of cytokine signaling-3 is affected in T-cells from tuberculosisTB patients // Clin. Microbiol. Infect. – 2011. ‒ Vol. 17. ‒ P. 1323-1331.
24. Kaforou M., Wright V. J., Oni T. et al. Detection of tuberculosis in HIV-infected and uninfected African adults using whole blood RNA expression signatures: a case-control study // PLoS Med. – 2013. ‒ Vol. 10, № 10. ‒ Р. e1001538.
25. Liu P. T., Stenger S., Tang D. H., Modlin R. L. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin // J. Immunol. ‒ 2007. ‒ Vol. 179, № 4. ‒ P. 2060-2063.
26. Lowe D. M., Redford P. S., Wilkinson R. J. et al. Neutrophils in tuberculosis: friend or foe // Trends Immunol. ‒ 2012. ‒ Vol. 33, № 1. ‒ P. 14-25.
27. MacMicking J., Xie Q.W., Nathan C. Nitric oxide and macrophage function // Annu. Rev. Immunol. – 1997. ‒ Vol. 15. ‒ P. 323-350.
28. Maertzdorf J., Ota M., Repsilber D. et al. Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis // PLoS One. ‒ 2011. ‒ Vol. 6, № 10. ‒ Р. e26938.
29. Maertzdorf J., Repsilber D., Parid S. K. et al. Human gene expression profiles of susceptibility and resistance in tuberculosis // Genes Immun. – 2011. ‒ Vol. 12, № 1. ‒ P. 15-22.
30. Maertzdorf J., Weiner J. 3rd, Mollenkopf H. J. et al. Common patterns and disease-related signatures in tuberculosis and sarcoidosis // Proc. Natl. Acad. Sci. U S A. ‒ 2012. ‒ Vol. 109, № 20. ‒ P. 7853-7858.
31. Manca C., Tsenova L. Bergtold A. et al. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta // Proc. Natl. Acad. Sci. U S A. ‒ 2001. ‒ Vol. 98, № 10. ‒ P. 5752-5757.
32. Manca C., Tsenova L., Freeman S. et al. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway // J. Interferon Cytokine Res. – 2005. ‒ Vol. 25, № 11. ‒ P. 694-701.
33. Mayer-Barber K. D., Andrade B. B., Oland S. D. et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk // Nature. ‒ 2014. ‒ Vol. 511, № 7507. ‒ P. 99-103.
34. McNab F., Mayer-Barber K., Sher A. et al. Type I interferons in infectious disease // Nat. Rev. Immunol. – 2015. ‒ Vol. 15, № 2. ‒ P. 87-103.
35. Michalska A., Blaszczyk K., Wesoly J. et al. A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses // Front. Immunol. – 2018. ‒ Vol. 9. ‒ P. e1135.
36. MinDeng, Xiao-Dong Lv, Zhi-Xian Fang et al. The blood transcriptional signature for active and latent tuberculosis // Infect. Drug Resist. – 2019. ‒ Vol. 12. ‒ P. 321-328.
37. Mishra A., Akhtar S., Jagannath C., Khan A. Pattern recognition receptors and coordinated cellular pathways involved in tuberculosis immune pathogenesis: Emerging concepts and perspectives // Mol. Immunol. – 2017. ‒ Vol. 87. ‒ P. 240-248.
38. Mistry R., Cliff J. M., Clayton C. L. et al. Gene expression patterns in whole blood identity subjects at risk for recurrent tuberculosis // J. Infect Dis. – 2007. ‒ Vol. 195, № 3. ‒ Р. 357-365.
39. Moreira-Teixeira L., Mayer-Barber K., Sher A., O'Garra A. Type I interferons in tuberculosis: Foe and occasionally friend // J. Exp. Med. – 2018. ‒ Vol. 215, № 5. ‒ P. 1273-1285.
40. Naranbhai V., Hill A. V., Abdool Karim S. S. et al. Ratio of monocytes to lymphocytes in peripheral blood identifies adults at risk of incident tuberculosis among HIV-infected adults initiating antiretroviral therapy // J. Infect. Dis. – 2014. ‒ Vol. 209, № 4. ‒ P. 500-509.
41. North R. J., Jung Y. J. Immunity to tuberculosis // Annu. Rev. Immunol. ‒ 2004. ‒ Vol. 22. ‒ P. 599-623.
42. O’Garra A., Redford P. S., McNab F. W. et al. The immune response in tuberculosis // Annu. Rev. Immunol. – 2013. ‒ Vol. 31. ‒ P. 475-527.
43. Ordway D., Henao-Tamayo M., Harton M. et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation // J. Immunol. – 2007. ‒ Vol. 179, № 1. ‒ P. 522-531.
44. Orme I. M., Robinson R. T., Cooper A. M. The balance between protective and pathogenic immune responses in the TB-infected lung // Nat. Immunol. – 2015. ‒ Vol. 16. ‒ P. 57-63.
45. Ottenhoff T. H., Dass R. H., Yang N. et al. Genome-wide expression profiling identifies type 1 interferon response pathways in active tuberculosis // PLOS One. ‒ 2012. ‒ Vol. 7. ‒ P. e45839.
46. Penn-Nicholson A., Mbandi S. K., Thompson E. et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and treatment response //Sci. Reports. – 2020. ‒ Vol. 10. ‒ P. e8629
47. Sakai S., Kauffman K. D., Sallin M. A. et al. CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease // PLoS Pathog. – 2016. ‒ Vol. 12, № 5. ‒ Р. e1005667.
48. Scriba T. J., Fiore-Gartland A., Penn-Nicholson A. Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial // Lancet Infect Dis. – 2021. – Vol. 21, № 3. – P. 354-365.
49. Sen Wang, Lei He, Jing Wu et al. Transcriptional profiling of human peripheral blood mononuclear cells identifies diagnostic biomarkers that distinguish active and latent tuberculosis // Front. Immunol. – 2019. – Vol. 10. – P. 2948.
50. Singhania A., Wilkinson R. J., Rodrigue M. et al. Transcriptomics in TB: the immune response and diagnosis // Nat. Immunol. – 2018. – Vol. 11. – P. 1159-1168.
51. Singhania A., Verma R., Graham C. M. et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis // Nature Communication. – 2018. – Vol. 9. – P. e:2308.
52. Sweeney T. E., Braviak L., Tato C. M., Khatri P. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis // Lancet Respir. Med. – 2016. – Vol. 4, № 3. – P. 213-224.
53. Szeliga J., Daniel D. S., Yang C. H. et al. Granulocyte-macrophage colony stimulating factor-mediated innate responses in tuberculosis // Tuberculosis (Edinb.) – 2008. – Vol. 88, № 1 – P. 7-20.
54. Zak D. E., Penn-Nicholson A., Scriba T. J. et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study // Lancet. – 2016. – Vol. 387. – P. 2312-2322.
Рецензия
Для цитирования:
Рубакова Э.И., Кондратьева Т.К., Апт А.С. Диагностика активности туберкулезной инфекции методами транскрипционного анализа. Туберкулез и болезни легких. 2021;99(12):57-64. https://doi.org/10.21292/2075-1230-2021-99-12-57-64
For citation:
Rubakova E.I., Kondratieva T.K., Аpt A.S. Diagnosis of Tuberculosis Infection Activity by Methods of Transcriptional Analysis. Tuberculosis and Lung Diseases. 2021;99(12):57-64. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-12-57-64