Comparison of Different Methods for Drug Susceptibility Testing of Mycobacterium tuberculosis to Rifampicin
https://doi.org/10.21292/2075-1230-2022-100-1-41-48
Abstract
The objective: to compare results of drug susceptibility testing to rifampicin by molecular genetic methods and phenotypic tests of Mycobacterium tuberculosis isolates obtained from clinical specimens of tuberculosis patients.
Subjects and Methods. 915 samples of M. tuberculosis DNA and 426 cultures were used in this study. Genotypic tests (TB-TEST (BIOCIP-IMB, Russia), GenoType MTBDRplusV2) and phenotypic technologies (absolute concentration method, Bactec MGIT 960 system, Sensititre Myco TB kit) were used.
Results. A high percentage (98.7%; CI 97.7-99.7%) of confirmation of the results of the molecular genetic test (TB-TEST) by the phenotypic test (absolute concentration method) was demonstrated. In some cases, the Bactec MGIT 960 system as well as the absolute concentration method were shown to produce false negative results of rifampicin resistance in some cases.
About the Authors
T. V. UmpelevaRussian Federation
Tatiana V. Umpeleva - Leading Researcher of Research Department of Microbiology and Preclinical Studies
50, XXII Parts"ezda St., Yekaterinburg, 620039
E. A. Mazurina
Russian Federation
Elena A. Mazurina - Laboratory Researcher of Research Department of Microbiology and Preclinical Studies
50, XXII Parts"ezda St., Yekaterinburg, 620039
D. V. Vakhrusheva
Russian Federation
Diana V. Vakhrusheva - Head of Research Department of Microbiology and Preclinical Studies
50, XXII Parts"ezda St., Yekaterinburg, 620039
N. I. Eremeeva
Russian Federation
Natalya I. Eremeeva - Leading Researcher of Research Department of Microbiology and Preclinical Studies
50, XXII Parts"ezda St., Yekaterinburg, 620039
References
1. Аndreevskaya S.N., Аndrievskaya I.Yu., Kiseleva E.А., Larionova E.E., Smirnova T.G., Chernousova L.N., Ergeshov А.E. The effect of mutations associated with resistance to rifampicin on the fitness of M. tuberculosis strains. Tub. I Sotsialno-Znachimye Zabolevaniya, 2016, no. 2, pp. 33-37. (In Russ.)
2. Vakhrusheva D.V., Eremeeva N.I., Umpeleva T.V., Belousova K.V. Experience of using TB-TEST technology (BIOCHIP-IMB, Russia) within the diagnostic algorithm. Tuberculosis and Lung Diseases, 2017, vol. 95, no. 10, pp. 29-35. (In Russ.)
3. Isakova А.I., Nosova E.Yu., Garmash Yu.Yu., Bogdanov K.А., Trusov V.N., Safonova S.G. Modern molecular genetic technologies in the diagnosis of tuberculosis when testing surgical specimens. Tub. I Sotsialno-Znachimye Zabolevaniya, 2018, no. 1, pp. 12-19. (In Russ.)
4. Nosova E.Yu., Khakhalina А.А., Galkina K.Yu., Krasnova M.А., Krylova L Yu., Safonova S.G. Diagnosis multiple and extensive drug resistance of Mycobacterium tuberculosis using various molecular test systems and BACTECTM MGITTM 960. Tuberkulez i Sotsialno-Znachimye Zabolevaniya, 2015, no. 3, pp. 11-17. (In Russ.)
5. Chernousova L.N., Sevastyanova E.V., Larionova E.E., Smirnova T.G., Аndreevskaya S.N., Popov S.А. Federalnye klinicheskie rekomendatsii po organizatsii i provedeniyu mikrobiologicheskoy i molekulyarno-geneticheskoy diagnostiki tuberkuleza. [Federal clinical recommendations in organization and implementation of microbiological and molecular-genetic diagnostics of tuberculosis]. 2014.
6. Abuali M.M., Katariwala R., LaBombardi V.J. A comparison of the Sensititre® MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis., 2011, no. 31 (5), pp. 835-839.
7. Campbell E.A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S.A. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 2001, no. 104 (6), pp. 901-912.
8. Di A., Levin B.R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol., 1999, no. 2, pp. 489-493.
9. Hall L., Jude K.P., Clark S.L., Dionne K., Merson R., Boyer A., Parrish N.M., Wengenack N.L. Evaluation of the sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J. Clin. Microbiol., 2012, no. 50 (11), pp. 3732-3734.
10. Mokrousov I., Otten T., Vyshnevskiy B., Narvskaya O. Allele-specific rpoB PCR assays for detection of rifampin-resistant Mycobacterium tuberculosis in sputum smears. Antimicrob. Agents Chemother., 2003, no. 47 (7), pp. 2231-2235.
11. Morlock G.P., Plikaytis B.B., Crawford J.T. Characterization of spontaneous, in vitro-selected, rifampin-resistant mutants of Mycobacterium tuberculosis strain H37Rv. Antimicrob. Agents Chemother., 2000, no. 44 (12), pp. 3298-3301.
12. Rigouts L., Gumusboga M., De Rijk W.B., Nduwamahoro E., Uwizeye C., De Jong B., Van Deun A. Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations. J. Clin. Microbiol., 2013, no. 51 (8), pp. 2641-2645.
13. Siu G.K.H., Zhang Y., Lau T.C.K., Lau R.W.T., Ho P.L., Yew W.W., Tsui S.K.W., Cheng V.C.C., Yuen K.Y., Yam W.C. Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2011, no. 66 (4), pp. 730-733.
14. Toungoussova O.S., Sandven P., Mariandyshev A.O., Nizovtseva N.I., Bjune G., Caugant D.A. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel Oblast, Russia. J. Clin. Microbiol., 2002, no. 40 (6), pp. 1930-1937.
15. Wehrli W. Rifampin: Mechanisms of action and resistance. Rev. Infect. Dis., 1983, no. 5 (3), pp. S407–S411.
16. Williams D.L., Spring L., Collins L., Miller L.P., Heifets L.B., Gangadharam P.R.J., Gillis T.P. Contribution of rpoB mutations to development of rifamycin crossresistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, no. 42 (7), pp. 1853-1857.
17. World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2021.
18. World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. 2018.
19. World Health Organization. Technical report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). 2021, 4, 38-44.
20. Yang B., Koga H., Ohno H., Ogawa K., Fukuda M., Hirakata Y., Maesaki S., Tomono K., Tashiro T., Kohno S. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 1998, no. 42 (5), pp. 621-628.
21. Yu, X., Ma, Y.F., Jiang, G.L., Chen, S.T., Wang, G.R., Huang, H.R. Sensititre® MYCOTB MIC plate for drug susceptibility testing of Mycobacterium tuberculosis complex isolates. The International Journal of Tuberculosis and Lung Disease: the Official Journal of the International Union Against Tuberculosis and Lung Disease, 2016, no. 20 (3), pp. 32-334.
22. Zimenkov D.V., Kulagina E.V., Antonova O.V., Zhuravlev V.Y., Gryadunov D.A. Simultaneous drug resistance detection and genotyping of Mycobacterium tuberculosis using a low-density hydrogel microarray. J. Antimicrob. Chemother., 2009, no. 71 (6), pp. 1520-1531.
Review
For citations:
Umpeleva T.V., Mazurina E.A., Vakhrusheva D.V., Eremeeva N.I. Comparison of Different Methods for Drug Susceptibility Testing of Mycobacterium tuberculosis to Rifampicin. Tuberculosis and Lung Diseases. 2022;100(1):41-48. (In Russ.) https://doi.org/10.21292/2075-1230-2022-100-1-41-48