Drug susceptibility of clinical isolates of Mycobacterium avium complex
https://doi.org/10.21292/2075-1230-2022-100-11-39-47
Abstract
The objective: to study drug susceptibility of M. avium and M. intracellulare isolates received from patients with mycobacteriosis residing in the North Western Federal District using the Sensititre SLOMYCO panels.
Subjects and Methods. From 2014 to 2020, 192 slow-growing MAC strains (164 – M. avium, 28 – M. intracellulare) obtained from HIV-negative patients with pulmonary mycobacteriosis were studied. Drug susceptibility testing of MAC strains was performed using the Sensititre SLOMYCO panel consisting of 13 antibacterial drugs.
Results. Of the 13 antibacterial drugs, clarithromycin was also most effective against both M. avium (67.1%; 110/164) and M. intracellulare (60.7%; 17/28) (p > 0.05). The proportion of M. avium and M. intracellulare strains sensitive to linezolid was high and amounted to 57.3 and 53.5%, as well as to amikacin – 57.3 and 53.5% respectively.
Of the four antibacterial drugs of the Sensititre SLOMYCO panel (clarithromycin, moxifloxacin, linezolid, and amikacin), for which critical concentrations (CC) were established, clarithromycin was the most effective against M. avium and M. intracellulare. Antibiotic-resistant M. avium isolates were more frequent in the group of previously treated patients.
About the Authors
D. A. StarkovaRussian Federation
Darya A. Starkova, Candidate of Biological Sciences, Senior Researcher of Molecular Epidemiology and Evolutionary Genetics Laboratory, Senior Researcher of Laboratory for Pathogen Identification
Phone: +7 (812) 233-21-49
14, Mira St., St. Petersburg, 197101
V. Yu. Zhuravlev
Russian Federation
Vyacheslav Yu. Zhuravlev, Candidate of Medical Sciences, Leading Researcher, Coordinator of Laboratory Diagnostics Unit, Head of Laboratory for Etiological Diagnostics
Phone: +7 (812) 775-75-55
2-4, Ligovsky Ave., St. Petersburg, 191036
N. S. Solovieva
Russian Federation
Natalya S. Solovieva, Candidate of Medical Sciences, Bacteriologist of Superior Merit, Head of Bacteriological Laboratory
Phone: +7 (812) 775-75-55
2-4, Ligovsky Ave., St. Petersburg, 191036
References
1. Andreevskaya S.N., Larionova E.E., Smirnova T.G. et al. Drug susceptibility of the slow growing non-tuberculous mycobacteria. Tuberculosis and Lung Diseases, 2016, vol. 94, no. 4, pp. 43-50. (In Russ.) https://doi.org/10.21292/2075-1230-2016-94-4-43-50.
2. Starkova D.A., Zhuravlev V.Yu., Vyazovaya A.A. et al. Species diversity of non-tuberculous mycobacteria in patients with mycobacteriosis in the North Western Federal District of Russia. Tuberculosis and Lung Diseases, 2019, vol. 97, no. 6, pp. 16-22. (In Russ.) https://doi.org/10.21292/2075-1230-2019-97-6-16-22
3. Chernousova L.N., Sevastyanova E.V., Larionova E.E. et al. Federalnye klinicheskie rekomendatsii po organizatsii i provedeniyu mikrobiologicheskoy i molekulyarno-geneticheskoy diagnostiki tuberkuleza. [Federal clinical recommendations in organization and implementation of microbiological and molecular-genetic diagnostics of tuberculosis]. Tver, OOO Izdatelstvo Triada Publ., 2015, 46 p.
4. Adachi Y., Tsuyuguchi K., Kobayashi T. et al. Effective treatment for clarithromycin-resistant Mycobacterium avium complex lung disease. J. Infect. Chemother., 2020, vol. 26, no. 7, pp. 676-680. doi: 10.1016/j.jiac.2020.02.008.
5. Brown-Elliott B.A., Iakhiaeva E., Griffith D.E. et al. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J. Clin. Microbiol., 2013, no. 51, pp. 3389e94.
6. Cho E.H., Huh H.J., Song D.J. et al. Differences in drug susceptibility pattern between Mycobacterium avium and Mycobacterium intracellulare isolated in respiratory specimens. J. Infect. Chemother., 2018, vol. 24, no. 4, pp. 315-318. doi: 10.1016/j.jiac.2017.10.022.
7. Clinical Laboratory Standards Institute. Susceptibility testing of mycobacteria, Nocardia spp., and other aerobic actinomycetes. 3rd ed. CLSI document M24. Clinical Laboratory Standards Institute. 2018.
8. Cowman S., van Ingen J., Griffith D.E. et al. Non-tuberculous mycobacterial pulmonary disease. Eur. Respir. J., 2019, vol. 54, no. 1, pp. 1900250. doi: 10.1183/13993003.00250-2019.
9. Huang C.C., Wu M.F., Chen H.C. et al. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J. Microbiol. Immunol. Infect., 2018, vol. 51, no. 5, pp. 636-643. doi: 10.1016/j.jmii.2017.05.001.
10. Kwon Y.S., Daley C.L., Koh W.J. Managing antibiotic resistance in nontuberculous mycobacterial pulmonary disease: challenges and new approaches. Expert Rev. Respir. Med., 2019, vol. 13, no. 9, pp. 851-861. doi: 10.1080/17476348.2019.1638765.
11. Li G., Pang H., Guo Q. et al. Antimicrobial susceptibility and MIC distribution of 41 drugs against clinical isolates from China and reference strains of nontuberculous mycobacteria. Int. J. Antimicrob. Agents, 2017, vol. 49, no. 3, pp. 364-374. doi: 10.1016/j.ijantimicag.2016.10.024.
12. Litvinov V., Makarova M., Galkina K. et al. Drug susceptibility testing of slowly growing non-tuberculous mycobacteria using slomyco test-system. PLoS One, 2018, vol. 13, no. 9, pp. 0203108. doi: 10.1371/journal.pone.0203108.
13. Maurer F.P., Pohle P., Kernbach M. et al. Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex. Clin. Microbiol. Infect., 2019, vol. 25, no. 3, pp. 379. e1-379.e7. doi: 10.1016/j.cmi.2018.06.010.
14. Saxena S., Spaink H.P., Forn-Cuní G. Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel), 2021, vol. 10, no. 2, 96. doi: 10.3390/biology10020096.
15. Schulthess B., Schäfle D., Kälin N. et al. Drug susceptibility distributions of Mycobacterium chimaera and other non-tuberculous mycobacteria. Antimicrob. Agents Chemother., 2021, vol. 65, no. 5, pp. e02131-20. doi: 10.1128/AAC.02131-20.
16. Tateishi Y., Ozeki Y., Nishiyama A. et al. Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol., 2021, vol. 21, no. 1, pp. 103. doi: 10.1186/s12866-021-02163-9.
17. Uchiya K.I., Asahi S., Futamura K. et al. Antibiotic susceptibility and genotyping of Mycobacterium avium strains that cause pulmonary and disseminated infection. Antimicrob. Agents Chemother., 2018, vol. 64, no. 4, pp. e02035-17. doi: 10.1128/AAC.02035-17.
18. van Ingen J., van der Laan T., Dekhuijzen R. et al. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int. J. Antimicrob. Agents, 2010, vol. 35, no. 2, pp. 169-173. doi: 10.1016/j.ijantimicag.2009.09.023.
19. Wang D.M., Liao Y., Li Q.F. et al. Drug resistance and pathogenic spectrum of patients coinfected with nontuberculous mycobacteria and human-immunodeficiency virus in Chengdu, China. Chin. Med. J., 2019, vol. 132, no. 11, pp. 1293-1297. doi: 10.1097/CM9.0000000000000235.
20. Wetzstein N., Kohl T.A., Andres S. et al. Comparative analysis of phenotypic and genotypic antibiotic susceptibility patterns in Mycobacterium avium complex. Int. J. Infect. Dis., 2020, no. 93, pp. 320-328. doi: 10.1016/j.ijid.2020.02.059.
21. Yamaba Y., Ito Y., Suzuki K. et al. Moxifloxacin resistance and genotyping of Mycobacterium avium and Mycobacterium intracellulare isolates in Japan. J. Infect. Chemother., 2019, vol. 25, no. 12, pp. 995-1000. doi: 10.1016/j.jiac.2019.05.028.
22. Zhang Z., Pang Y., Wang Y. et al. Differences in risk factors and drug susceptibility between Mycobacterium avium and Mycobacterium intracellulare lung diseases in China. Int. J. Antimicrob. Agents, 2015, vol. 45, no. 5, pp. 491-495. doi: 10.1016/j.ijantimicag.2015.01.012.
Review
For citations:
Starkova D.A., Zhuravlev V.Yu., Solovieva N.S. Drug susceptibility of clinical isolates of Mycobacterium avium complex. Tuberculosis and Lung Diseases. 2022;100(11):39-47. (In Russ.) https://doi.org/10.21292/2075-1230-2022-100-11-39-47