Preview

Tuberculosis and Lung Diseases

Advanced search

Morphological and Functional Characteristics of the Microenvironment After Pleural Implantation of Biosynthetic Materials

https://doi.org/10.58838/2075-1230-2023-101-1-48-54

Abstract

The objective: to study morphological changes in tissues after implantation of a bioresorbable material synthesized on the basis of polylactide (PLA) and polycaprolactone (PCL) in various ratios.

Subjects and Methods. Laboratory animals Chinchilla lanigera (n = 12) underwent intrapleural implantation with 2% PLA/PCL 1/1 and 4% PLA/PCL 1/3 materials. Morphometric assessment was carried out in14 and 28 weeks, the animals were withdrawn from the experiment by an anesthetic overdosing.

Results. When studying tissues adjacent to the implant regardless of differences in its composition, similar morphological signs were observed. A fibrous capsule formed around the implants, and it was more pronounced in 4% of PLA/PCL 1/3. In the structure of the implants, we noted the growth of loose and dense unformed fibrous connective tissue with blood vessels with a significant replacement of the bioresorbable polymer material (by 2/3). Lymphocytes, plasma cells, single macrophages, and multinucleated cells were predominantly located at the implant/tissue interface. In all studied samples, no necrosis was observed in the implantation bed and surrounding tissue.

Conclusion. The data obtained confirm the biosafety of biomaterials and demonstrate the potential for their use in surgical treatment of humans.

About the Authors

G. A. Demyashkin
I.M. Sechenov First Moscow State Medical University
Russian Federation

Grigoriy A. Demyashkin, Candidate of Medical Sciences, Head of Histology and Immunohistochemistry Laboratory

Moscow



T. K. Tokaev
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Timur K. Tokaev, Researcher of Pulmonary Tuberculosis Surgery Department

Build. 2, 4, Dostoevskiy St., Moscow, 127473



A. S. Bikbaev
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Aleksandr S. Bikbaev, Thoracic Surgeon

Build. 2, 4, Dostoevskiy St., Moscow, 127473



M. V. Sinitsyn
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health; Pirogov Russian National Research Medical University
Russian Federation

Mikhail V. Sinitsyn, Doctor of Medical Sciences, Deputy Head Physician for Surgery, Professor of Phthisiology Department

Build. 2, 4, Dostoevskiy St., Moscow, 127473



T. E. Grigoryev
Kurchatov Institute National Research Center
Russian Federation

Timofey E. Grigoryev, Candidate of Physical and Mathematical Sciences, Deputy Head for Research of Kurchatov Unit of Nano-, Bio-, Information, Cognitive, Socio-Humanitarian Sciences

1, Akademika Kurchatova Sq., Moscow, 123182



Yu. D. Zagoskin
Kurchatov Institute National Research Center
Russian Federation

Yury D. Zagoskin, Candidate of Chemical Sciences, Researcher of Polymer Laboratory Material, Kurchatov Unit of Nano-, Bio, Information, Cognitive, Socio-Humanitarian Sciences, Research Center

1, Akademika Kurchatova Sq., Moscow, 123182



References

1. Krasnikova E.V., Popova L.A., Aliev V.K., Tarasov R.V., Turovtseva Yu.V., Ibriev A.S., Sadovnikova S.S., Bagirov M.A. A сase of bilateral silicone plombage and valve bronchoblocation in a patient with widespread fibrocavernous drug resistant tuberculosis of the operated lung. Novosti Khirurgii. 2019, vol. 27, no. (4), pp. 461-468. (In Russ.) doi:10.18484/2305-0047. 2019.4.461.

2. Lovacheva O.V., Bagirov M.A., Bagdasaryan T.R., Krasnikova E.V., Shergina E.A., Gritsay I.Yu. Use of endobronchial valves and extrapleural plombage for treatment of bilateral massive cavities in a female patient with multiple drug resistant pulmonary tuberculosis. Tuberculosis and Lung Diseases, 2017, vol. 95, no. 9, pp. 60-67. (In Russ.) doi: 10.21292/2075-1230-2017-95-960-67.

3. Sinitsyn M.V., Agkatsev T.V., Reshetnikov M.N., Pozdnyakova E.I., Itskov A.V., Gazdanov T.A., Plotkin D.V. Extrapleural pneumolysis with plombage for cavitary pulmonary tuberculosis treatment. Khirurg, 2018, no. 1-2, pp. 54-63. (In Russ.)

4. Sinitsyn M.V., Kalinina M.V., Belilovsky E.M., Galstyan A.S., Reshetnikov M.N., Plotkin D.V. The treatment of tuberculosis under current conditions. Terapevticheskiy Arkhiv, 2020, vol. 92, no. 8, pp. 86-94. (In Russ.) doi: 10.26442/00403660.2020.08.000762.

5. Barbeck M., Serra T., Booms P., Stojanovic S., Najman S., Engel E., Sader R., Kirkpatrick C. J., Navarro M., Ghanaati S. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components - Guidance of the inflammatory response as basis for osteochondral regeneration // Bioact. Mater. – 2017. Vol. 2 № 4. – Р. 208-223. doi: 10.1016/j.bioactmat.2017.06.001. PMID: 29744431; PMCID: PMC5935508.

6. Cho S. W., Shin B. H., Heo C. Y., Shim J. H. Efficacy study of the new polycaprolactone thread compared with other commercialized threads in a murine model // J. Cosmet. Dermatol. – 2021. – Vol. 20, № 9. – Р. 2743-2749. doi: 10.1111/jocd.13883. Epub 2021 Jan 9. PMID: 33421303; PMCID: PMC8451902.

7. Gregor A., Filova E., Novak M., Kronek J., Chlup H., Buzgo M., Blahnová V., Lukášová V., Bartoš M., Nečas A., Hošek J. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer // J. Biol. Eng. – 2017. – № 11. – Р. 31. doi:10.1186/s13036-017-0074-3. PMID: 29046717; PMCID: PMC5641988.

8. Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B. Scaffolds for bone tissue engineering: State of the art and new perspectives // Mater. Sci. Eng. C. – 2017. – № 78. – Р. 1246-1262. (In Russ.). doi:10.1016/j.msec.2017.05.017.

9. Subotic D., Yablonskiy P., Sulis G., Cordos I., Petrov D., Centis R., D’Ambrosio L., Sotgiu G., Migliori G.B. Surgery and pleuro-pulmonary tuberculosis: a scientific literature review // J. Thorac. Dis. – 2016. – Vol. 8, № 7. – Р. E474-Е485. doi: 10.21037/jtd.2016.05.59. PMID: 27499980; PMCID: PMC4958807.

10. Varani J., Dame M. K., Rittie L., Fligiel S. E., Kang S., Fisher G. J., Voorhees J. J. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation // Am. J. Pathol. – 2006. – Vol. 168, № 6. – Р. 1861-1868. doi: 10.2353/ajpath.2006.051302. PMID: 16723701; PMCID: PMC1606623.

11. World Health Organization. Global Tuberculosis Report, 2021.

12. Yasuda A., Kojima K., Tinsley K. W., Yoshioka H., Mori Y., Vacanti C. A. In vitro culture of chondrocytes in a novel thermoreversible gelation polymer scaffold containing growth factors // Tissue Eng. – 2006. – Vol. 12, № 5). – Р. 1237-1245. doi: 10.1089/ten.2006.12.1237. PMID: 16771637.


Review

For citations:


Demyashkin G.A., Tokaev T.K., Bikbaev A.S., Sinitsyn M.V., Grigoryev T.E., Zagoskin Yu.D. Morphological and Functional Characteristics of the Microenvironment After Pleural Implantation of Biosynthetic Materials. Tuberculosis and Lung Diseases. 2023;101(1):48-54. (In Russ.) https://doi.org/10.58838/2075-1230-2023-101-1-48-54

Views: 555


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)