NETosis-Forming Ability of Neutrophils in Patients with Limited and Disseminated Tuberculous Lesions
https://doi.org/10.58838/2075-1230-2023-101-3-78-86
Abstract
The objective: to assess NETosis-forming ability of neutrophils in patients with limited and disseminated tuberculous lesions.
Subjects and Methods. 44 new cases of respiratory tuberculosis were included in the study. Group 1 consisted of 22 patients with limited focal or infiltrative tuberculosis with no lung tissue destruction, Group 2 included 22 patients with disseminated tuberculosis with destruction of the lung tissue. Control Group (Group 0) included 22 healthy volunteers. NETosis-forming ability was assessed in vitro in the isolated fraction of neutrophils from peripheral venous blood. The ratio (%) of neutrophils of different degrees of activation and the ratio (%) of various forms of neutrophil extracellular traps (NET), the bacterial capture coefficient of NEL were calculated.
Results. NETosis-forming ability of neutrophils in the patients from Groups 1 and 2 was more pronounced versus Group 0, and in Group 2 it was maximum. In Group 2, the bacterial capture rate by NET was statistically significantly lower versus Group 1 (p=0,0147), which may indicate some degree of «inferiority» of NET formed in Group 2.
About the Authors
A. V. MordykRussian Federation
Anna V. Mordyk, Doctor of Medical Sciences, Professor, Head of Department of Phthisiology, Pulmonology and Infectious Diseases
12, Lenina St., Omsk, 644099
Phone: +7 (913) 649-21-19
A. N. Zolotov
Russian Federation
Aleksandr N. Zolotov, Candidate of Medical Sciences, Senior Researcher
12, Lenina St., Omsk, 644099
Phone: +7 (913) 977-77-96
D. G. Novikov
Russian Federation
Dmitry G. Novikov, Candidate of Medical Sciences, Associate Professor, Head of Central Research Laboratory
12, Lenina St., Omsk, 644099
Phone: +7 (906) 991-80-88
N. A. Kirichenko
Russian Federation
Nikolay A. Kirichenko, Junior Researcher
12, Lenina St., Omsk, 644099
Phone: +7 (909) 536-96-68
P. O. Pakhtusova
Russian Federation
Polina O. Pakhtusova, Junior Researcher
12, Lenina St., Omsk, 644099
Phone: +7 (923) 035-57-47
A. O. Ptukhin
Russian Federation
Aleksandr O. Ptukhin, Full Time Post-Graduate Student Phthisiologists of Clinical TB Dispensary
12, Lenina St., Omsk, 644099
15/1, 20 Let RKKA St., Omsk, 644001
no. 4 Phone: +7 (923) 038-08-91
References
1. Dolgushin I. I., Andreeva Yu. S., Savochkina A. Yu. Neytrofilnyye vnekletochnyye lovushki i metody otsenki funktsionalnogo statusa neytrofilov. [Neutrophil extracellular traps and methods for assessing the neutrophil functional state]. Moscow, Izdatelstvo RAMN Publ., 2009, 208 p.
2. Dolgushin I. I., Mezentseva E. A., Savochkina A. Yu., Kuznetsova E. K. Neutrophil as a multifunctional relay in immune system. Infektsiya I Immunitet, 2019, vol. 9, no. 1, pp. 9-38. (In Russ.) https://doi.org/10.15789/2220-7619-2019-1-9-38
3. Savochkina A. Yu., Pykhova L. R., Abramovskikh O. S., Poltorak A. E., Chetvernina E. A. Comparative analysis of the indicators of the functional activity of neutrophils peripheral blood in patients with sepisis depending on the outcome. Rossiyskiy Immunologicheskiy Journal, 2018, vol. 12 (21), no. 3, pp. 407–411. (In Russ.) https://doi.org/10.31857/S102872210002419-5
4. Sposob obnaruzheniya neytrofilnykh vnekletochnykh lovushek v supravitalno okrashennom preparate krovi. [Method for detection of neutrophil extracellular traps in supravital stained blood specimens]. Dmitry G. Novikov (RU), Alexander N. Zolotov (RU), Nikolay A. Kirichenko (RU), Anna V. Mordyk (RU). Patent no. 2 768 152 C1, 23.03.2022. Application no. 2021129097 dated 06.10.2021.
5. Amaral E. P., Lasunskaia E. B., D’Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death // Microbes Infect. – 2016. – № 18. – Р. 11–20. https://doi.org/10.1016/j.micinf.2015.09.005
6. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., Zychlinsky A. // Neutrophil extracellular traps kill bacteria. Science. – 2004. – № 303. – Р. 1532–5. https://doi.org/10.1126/science.1092385
7. Brinkmann V., Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs // Nat. Rev. Microbiol. – 2007. – № 5. – Р. 577–82. https://doi.org/10.1038/nrmicro1710.
8. de Melo M. G. M., Mesquita E. D. D., Oliveira M. M., Silva-Monteiro C., Silveira A. K. A., Malaquias T. S., Dutra T. C. P., Galliez R. M., Kritski A. L. and Silva E. C. Imbalance of NET and Alpha-1-Antitrypsin in Tuberculosis Patients Is Related With Hyper Inflammation and Severe Lung Tissue Damage // Front. Immunol. – 2019. – № 9. – Р. 3147. https://doi.org/10.3389/fimmu.2018.03147
9. Dorhoi A., Kaufmann S. H. Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation // Eur. J. Immunol. – 2015. – № 45. – Р. 2191–202. https://doi.org/10.1002/eji.201545493
10. Kaplan M. J., Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity // J. Immunol. – 2012. – № 189. – Р. 2689–95. https://doi.org/10.4049/jimmunol.1201719
11. Marakalala M. J., Raju R. M., Sharma K., Zhang Y. J., Eugenin E. A., Prideaux B., Daudelin I. B., Chen P. Y., Booty M. G., Kim J. H., Eum S. Y., Via L. E., Behar S. M., Barry CE 3rd, Mann M., Dartois V., Rubin E. J. Inflammatory signaling in human tuberculosis granulomas is spatially organized // Nat Med. – 2016; Vol. 22, № 5. – Р. 531–8. https://doi.org/10.1038/nm.4073
12. Marzo E., Vilaplana C., Tapia G., Diaz J., Garcia V., Cardona P. J. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis // Tuberculosis (Edinb). – 2014, Vol. 94, № 1. – Р. 55–64. https://doi.org/10.1016/ j.tube.2013.09.004
13. Moreira-Teixeira L., Stimpson P. J., Stavropoulos E., Hadebe S., Chakravarty P., Ioannou M., Aramburu I. V., Herbert E., Priestnall S. L., Suarez-Bonnet A., Sousa J., Fonseca K. L., Wang Q., Vashakidze S., Rodríguez-Martínez P., Vilaplana C., Saraiva M., Papayannopoulos V., O`Garra A. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis // Nat. Commun. – 2020. – Vol. 11, № 1. – Р. 5566. https://doi.org/10.1038/s41467-020-19412-6
14. Nathan C. Neutrophils and immunity: challenges and opportunities // Nat. Rev. Immunol. – 2006. – № 6. – P. 173–82. https://doi.org/10.1038/nri1785
15. Segal A. W. How neutrophils kill microbes // Annu Rev Immunol. – 2005. – № 23. – Р. 197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653
16. Yang H., Biermann M. H., Brauner J. M., Liu Y., Zhao Y., Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation // Front. Immunol. – 2016. – № 7. – Р. 302. https://doi.org/10.3389/fimmu.2016.00302
Review
For citations:
Mordyk A.V., Zolotov A.N., Novikov D.G., Kirichenko N.A., Pakhtusova P.O., Ptukhin A.O. NETosis-Forming Ability of Neutrophils in Patients with Limited and Disseminated Tuberculous Lesions. Tuberculosis and Lung Diseases. 2023;101(3):78–86. (In Russ.) https://doi.org/10.58838/2075-1230-2023-101-3-78-86