Preview

Туберкулез и болезни легких

Расширенный поиск

Генетические аспекты лекарственной устойчивости микобактерий туберкулеза к новым препаратам с противотуберкулезной активностью

https://doi.org/10.58838/2075-1230-2023-101-4-87-93

Полный текст:

Аннотация

Проанализированы 57 публикаций, посвященных изучению генетических механизмов формирования лекарственной устойчивости микобактерий туберкулеза к бедаквилину, деламаниду, претоманиду, линезолиду и клофазимину. Выявление генетических факторов лекарственной устойчивости МБТ - основа поиска новых мишеней при создании противотуберкулезных препаратов и разработки методов тестирования лекарственной чувствительности.

Об авторах

А. В. Кукурика
ФГБУ «Научный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Кукурика Анастасия Владимировна - специалист центра социально значимых инфекций.

127473, Москва, ул. Достоевского, д. 4

Тел.: +7 (495) 681-11-66



Е. И. Веселова
ФГБУ «Научный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Веселова Елена Игоревна - кандидат медицинских наук, научный сотрудник научного отдела инфекционной патологии.

127473, Москва, ул. Достоевского, д. 4

Тел.: +7 (495) 681-11-66



А. Б. Перегудова
ФГБУ «Научный медицинский исследовательский центр фтизиопульмонологии и инфекционных заболеваний» МЗ РФ
Россия

Перегудова Алла Борисовна – кандидат медицинских наук, заведующая инфекционным отделением.

127473, Москва, ул. Достоевского, д. 4

Тел.: +7 (495) 681-11-66



Список литературы

1. Васильева И. А., Самойлова А. Г., Зимина В. Н., Ловачева О. В., Абрамченко А.В. Химиотерапия туберкулеза в России - история продолжается // Туберкулёз и болезни лёгких. - 2023. - Т. 101, № 2. - С. 8-12. https://doi.org/10.58838/2075-1230-2023-101-2-8-12

2. Гайда А. И., Абрамченко А. В., Романова М. И., Тоичкина Т. В., Бурыхин В. С., Борисов С. Е., Филиппов А. В., Кузнецова Т. А., Перхин Д. В., Свешникова О. М., Лехляйдер М. В., Пантелеев А. М., Тоинова С. В., Масленникова Т. И., Галахова Д. О., Популяшина Л. Н., Саенко Г. И., Анисимова Е. С., Свичарская А. К., Сосова Н. А., Ловачева О. В., Марьяндышев А. О., Самойлова А. Г. Обоснование длительности химиотерапии больных туберкулезом с множественной и преширокой лекарственной устойчивостью возбудителя в Российской Федерации // Туберкулёз и болезни лёгких. - 2022. Т. 100, № 12. - С. 44-53. https://doi.org/10.21292/2075-1230-2022-100-12-44-53

3. Almeida D., Ioerger T., Tyagi S. et al. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis // Antimicrob Agents Chemother. - 2016. - № 60. - Р. 4590-9.

4. Andries K., Villellas C., Coeck N., Thys K., Gevers T., Vranckx L., Andries K., Villellas C., Coeck N., Thys K., Gevers T., Vranckx L. et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline // PLoS One. - 2014. - № 9. Р. e102135.

5. Battaglia S., Spitaleri A., Cabibbe A. M., Meehan C. J., Utpatel C., Ismail N., Tahseen S., Skrahina A., Alikhanova N., Mostofa Kamal S.M., Barbova A., Niemann S., Groenheit R., Dean A. S., Zignol M., Rigouts L., Cirillo D. M. Characterization of Genomic Variants Associated with Resistance to Bedaquiline and Delamanid in Naive Mycobacterium tuberculosis Clinical Strains. J. Clin. Microbiol., 2020, vol. 58, no. 11, pp. e01304-20.

6. Beckert P., Hillemann D., Kohl T. A. et al. RplC T460C identified as a dominant mutation in linezolid-resistantMycobacteriumtuberculosis strains. Antimicrob. Agents Chemother., 2012, no. 56, pp. 2743-5.

7. Castro R. A. D., Borrell S., Gagneux S. The within-host evolution of antimicrobial resistance in Mycobacterium tuberculosis. FEMS Microbiology Reviews, 2020, fuaa 071, pp. 1-27.

8. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva, World Health Organization, 2021.

9. De Vos M., Ley S., Derendinger B., Dippenaar A., Grobbelaar M., Reuter A., et al. Emergence of bedaquiline resistance after completion of bedaquiline-based drug resistant TB treatment: a case study from South Africa. Russ. J. Infect. Immun., 2018, no. 8, pp. 566.

10. Dookie N., Rambaran S., Padayatchi N., Mahomed S., Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother., 2018, vol. 73, pp. 1138-1151.

11. Feuerriegel S., Köser C. U., Bau D., Rusch-Gerdes S., Summers D. K., Archer J. A., Marti-Renom M. A., Niemann S. Impact of Fgd1 and ddn diversity in Mycobacterium tuberculosis complex on in vitro susceptibility to PA-824. Antimicrob. Agents Chemother., 2011, no. 55, pp. 5718-5722.

12. Ghajavand H., Kamakoli M. K., Khanipour S., Dizaji P. S., Masoumi M., Jamnani R. F., Fateh A., Siadat S. D., Vaziri F. High Prevalence of Bedaquiline Resistance in Treatment-Naive Tuberculosis Patients and Verapamil Effectiveness. Antimicrob. Agents Chemother., 2019, no. 63, pp. e02530-18.

13. Ghodousi A., Rizvi A. H., Baloch A. Q., Ghafoor A., Khanzada F. M., Qadir M., Borroni E., Trovato A., Tahseen S., Cirillo D. M. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrobial. Agents Chemother., 2019, no. 63, pp. e00915-19.

14. Hartkoorn R. C., Uplekar S., Cole S. T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, no. 58, pp. 2979-81.

15. Haver H. L., Chua A., Ghode P. et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, no. 59, pp. 5316-23.

16. Hoffmann H., Kohl T. A., Hofmann-Thiel S., et al. Delamanid and bedaquiline resistance in Mycobacterium tuberculosis ancestral Beijing genotype causing extensively drug-resistant tuberculosis in a Tibetan refugee. Am. J. Respir. Crit. Care Med., 2016, no. 193, pp. 337-40.

17. Hu M., Fu L., Wang B., Xu J., Guo S., Zhao J., Li Y., Chen X., Lu Y. Genetic and Virulence Characteristics of Linezolid and Pretomanid Dual Drug-Resistant Strains Induced from Mycobacterium tuberculosis in vitro. Infect. Drug Resist., 2020, no. 13, pp. 1751-176.

18. Ismail N., Ismail N. A., Omar S. V., Peters R. P. H. Study of Stepwise Acquisition of of rv0678 and atpE Mutations Conferring Bedaquiline Resistance. Antimicrob. Agents Chemother., 2019, no. 63, pp. e00292-19.

19. Ismail N., Omar S. V., Ismail N. A., Peters R. P. H. Collated data of mutation frequencies and associated genetic variants of bedaquiline, clofazimine and linezolid resistance in Mycobacterium tuberculosis. Data in Brief, 2018, vol. 20, pp. 1975-1983.

20. Ismail N., Omar S. V., Ismail N. A., Peters R. P. H. In vitro approaches for generation of Mycobacterium tuberculosis mutants resistant to bedaquiline, clofazimine or linezolid and identification of associated genetic variants. J. Microbiol. Methods, 2018, no. 153, pp. 1-9.

21. Ismail N., Omar S. V., Joseph L., Govender N., Blows L., Ismail F., Koornhof H., Dreyer A. W., Kaniga K., Ndjeka N. Defining bedaquiline susceptibility, resistance, cross-resistance and associated genetic determinants: a retrospective Cohort study. EBioMedicine, 2018, no. 28, pp. 136-142.

22. Ismail N., Peters R. P. H., Ismail N. A., et al. Clofazimine exposure in vitro selects efflux pump mutants and bedaquiline resistance. Antimicrob. Agents Chemother., 2019, no. 63, pp. e02141-18.

23. Kabahita J. M., Kabugo J., Kakooza F., Adam I., Guido O., Byabajungu H., Namutebi J., Namaganda M. M., Lutaaya P., Otim J., Kakembo F. E., Kanyerezi S., Nabisubi P., Sserwadda I., Kasule G.W., Nakato H., Musisi K., Oola D., Joloba M. L., Mboowa G. First report of whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate with bedaquiline, linezolid and clofazimine resistance from Uganda // Antimicrob. Resist. Infect. Control. - 2022. - Vol. 11, № 1. - Р. 68. https://doi.org/10.1186/s13756-022-01101-2

24. Kadura S., King N., Nakhoul M., Zhu H., Theron G., Köser C. U., Farhat M. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid // J. Antimicrob. Chemother. - 2020. - Vol. 75. - P. 2031-2043.

25. Kaniga K., Hasan R., Jou R., Vasiliauskienė E., Chuchottaworn C., Ismail N., Metchock B., Miliauskas S., Viet Nhung N., Rodrigues C., Shin S., Simsek H., Smithtikarn S., Ngoc ALT, Boonyasopun J., Kazi M., Kim S., Kamolwat P., Musteikiene G., Sacopon C. A., Tahseen S., Vasiliauskaite L., Wu M. H., Vally Omar S. Bedaquiline Drug Resistance Emergence Assessment in Multidrug-Resistant Tuberculosis (MDR-TB): a 5-Year Prospective In Vitro Surveillance Study of Bedaquiline and Other Second-Line Drug Susceptibility Testing in MDR-TB Isolates // J. Clin. Microbiol. - 2022. - Vol. 60. - № 1. - Р. e0291920. https://doi.org/10.1128/JCM.02919-20

26. Karmakar M., Rodrigues C. H. M., Holt K. E., Dunstan S. J., Denholm J., Ascher D. B. Empirical ways to identify novel Bedaquiline resistance mutations in AtpE // PLoS ONE. - 2019. - № 14. - Р. e0217169.

27. Köser C. U., Maurer F. P., Kranzer K. ‘Those who cannot remember the past are condemned to repeat it': drug-susceptibility testing for bedaquiline and delamanid // Int. J. Infect. Dis. - 2019. - 80S. - S32-S35.

28. Lee B. M., Harold L. K., Almeida D. V., Afriat-Jurnou L., Aung H. L., Forde B. M., Hards K., Pidot S. J., Ahmed F. H., Mohamed A. E., Taylor M. C., West N. P., Stinear T. P., Greening C., Beatson S. A., Nuermberger E. L., Cook G. M., Jackson C. J. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering // PLoS Pathog. - 2020. - № 16. - Р. e1008287.

29. Liu Y., Gao J., Du J., Shu W., Wang L., Wang Yu., Xue Z. , Li L., Xu S., Pang Yu. Acquisition of clofazimine resistance following bedaquiline treatment for multidrug-resistant tuberculosis // Int. J. of Inf. Diseases. - 2021. - Vol. 102 - P. 392-3.

30. Makafe G. G., Cao Y., Tan Y. et al. Role of the Cys154Arg substitution in ribosomal protein L3 in oxazolidinone resistance in Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. - 2016. - № 60. - Р. 3202-6.

31. Manjunatha U. H., Boshoff H., Dowd C. S. et al. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacteriumtuberculosis // Proc. Natl. Acad. Sci USA. - 2006. - № 103. - Р. 431-6.

32. Mansjö M., Karlsson Lindsjö O., Grönfors Seeth C., Groenheit R., Werngren J. The ddn Trp20Stop Mutation and Its Association with Lineage 4.5 and Resistance to Delamanid and Pretomanid in Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. - 2022. - Vol. 66, № 12. - Р. e0102622. https://doi.org/10.1128/aac.01026-22

33. Martinez E., Hennessy D., Jelfs P., Crighton T., Chen S. C. A., Sintchenko V. Mutations associated with in vitro resistance to bedaquiline in Mycobacterium tuberculosis isolates in Australia // Tuberculosis. - 2018. - № 111. - Р. 31-34.

34. McNeil M. B., Dennison D. D., Shelton C. D. et al. In vitro isolation and characterization of oxazolidinone-resistant Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. - 2017. - № 61. - Р. e01296-17.

35. Merker M., Kohl T. A., Barilar I. et al. Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex // Genome Med. - 2020. - № 12. - Р. 27.

36. Mokrousov I., Akhmedova G., Polev D., Molchanov V., Vyazovaya A. Acquisition of bedaquiline resistance by extensively drug-resistant Mycobacterium tuberculosis strain of Central Asian Outbreak clade // Clinical Microbiology and Infection. - 2019. - Vol. 25. - P. 1295-1297.

37. Omar S. V., Joseph L., Said H. M. et al. Whole genome sequencing for drug resistance determination in Mycobacterium tuberculosis // Afr. J. Lab. Med. - 2019. - Vol. 8, № 1. - P. a801.

38. Pang Y., Zong Z., Huo F. et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China // Antimicrob. Agents. Chemother. - 2017. - № 61. - Р. e00900-17.

39. Park S., Jung J., Kim J., Han S. B., Ryoo S. Investigation of Clofazimine Resistance and Genetic Mutations in Drug-Resistant Mycobacterium tuberculosis Isolates // J. Clin. Med. - 2022. - Vol. 11, № 7. - Р. 1927. https://doi.org/10.3390/jcm11071927

40. Ramirez N., Vargas Q., Diaz G. Whole Genome Sequencing for the Analysis of Drug Resistant Strains of Mycobacterium tuberculosis: A Systematic Review for Bedaquiline and Delamanid // Antibiotics. - 2020. - Vol. 9. - P. 133.

41. Reichmuth M. L., Homke R., Zurcher K., Sander P., Avihingsanon A., Collantes J., Loiseau C., Borrell S., Reinhard M., Wilkinson R. J., Yotebieng M., Fenner L., Bottger E. C., Gagneux S., Egger M., Keller P. M., on behalf of the International epidemiology Databases to Evaluate AIDS (IeDEA). Natural polymorphisms in Mycobacterium tuberculosis conferring resistance to delamanid in drugnaive patients // Antimicrob. Agents. Chemother. - 2020. - № 64.- Р. 00513-20.

42. Richter E., Rüsch-Gerdes S., Hillemann D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. - 2007. - № 51. - Р. 1534-6.

43. Rifat D., Li S-Y., Ioerger T, Lanoix J.-P., Lee J., Bashiri G., Sacchettini J., Nuermberger E. Mutations in Rv2983 as a novel determinant of resistance to nitroimidazole drugs in Mycobacterium tuberculosis. - bioRxiv, 2018.

44. Rifat D., Li S. Y., Ioerger T., Shah K., Lanoix J. P., Lee J., Bashiri G., Sacchettini J., Nuermberger E. Mutations in fbiD (Rv2983) as a Novel Determinant of Resistance to Pretomanid and Delamanid in Mycobacterium tuberculosis // Antimicrob. Agents. Chemother. - 2020. - Vol. 65, № 1. - P. e01948-20.

45. Schena E., Nedialkova L., Borroni E., Battaglia S., Cabibbe A. M., Niemann S., et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtiter assay and the BACTECTM MGITTM 960 system // J. Antimicrob. Chemother. - 2016. - № 71. - Р. 1532-9.

46. Somoskovi A., Bruderer V., Homke R. et al. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment // Eur. Respir. J. - 2015. - № 45. - Р. 554-7.

47. Swain S. S., Sharma D., Hussain T., Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis // Emerging Microbes & Infections. - 2020. - Vol. 9, № 1. - P. 1651-1663.

48. Tiberi S., Cabibbe A. M., Tomlins J., Cirillo D. M., Migliori G. B. Bedaquiline Phenotypic and Genotypic Susceptibility Testing,Work in Progress! // EBioMedicine. - 2018. - № 29. - Р. 11-12.

49. Veziris N., Bernard C., Guglielmetti L. et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors // Eur. Respir. J. - 2017. - № 49. - Р. 1601719.

50. Villellas C., Coeck N., Meehan C. J. et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline // J. Antimicrob. Chemother. - 2017. - № 72. - Р. 684-90.

51. Walker T. M., Miotto P., Koser C. U., Fowler P. W., Knaggs J., Iqbal Z., Hunt M., Chindelevitch L., Farhat M., Cirillo D. M., Comas I., Posey J., Omar S. V., Peto T. E., Suresh A., Uplekar S., Laurent S., Colman R. E., Nathanson C. M., Zignol M., Walker A. S.; CRyPTIC Consortium; Seq&Treat Consortium; Crook D. W., Ismail N., Rodwell T. C. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis // Lancet Microbe. -2022. - Vol. 3, № 4. - Р. e265-e273. https://doi.org/10.1016/S2666-5247(21)00301-3

52. Xu J., Wang B., Hu M. et al. Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis // Antimicrob. Agents. Chemother. - 2017. - 61. - Р. e00239-17.

53. Yang J. S., Kim K. J., Choi H., Lee S. H. Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea // Ann. Lab. Med. - 2018. - Vol. 38. - P. 563-568.

54. Zhang S., Chen J., Cui P. et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis // J. Antimicrob. Chemother. - 2015. - № 70. - Р. 2507-10.

55. Zhang S., Chen J., Cui P. et al. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid // Antimicrob. Agents. Chemother. - 2016. - № 60. - Р. 2542-4.

56. Zhang Z., Pang Y., Wang Y. et al. Beijing genotype of Mycobacterium tuberculosis is significantly associated with linezolid resistance in multidrugresistant and extensively drug-resistant tuberculosis in China // Int. J. Antimicrob. Agents. - 2014. - № 43. - Р. 231-5.

57. Zimenkov D. V., Nosova E. Y., Kulagina E. V. et al. Examination of bedaquiline and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region // J. Antimicrob. Chemother. - 2017. - № 72. - Р. 1901-6.


Рецензия

Для цитирования:


Кукурика А.В., Веселова Е.И., Перегудова А.Б. Генетические аспекты лекарственной устойчивости микобактерий туберкулеза к новым препаратам с противотуберкулезной активностью. Туберкулез и болезни легких. 2023;101(4):87-93. https://doi.org/10.58838/2075-1230-2023-101-4-87-93

For citation:


Kukurika A.V., Veselova E.I., Peregudova A.B. Genetic Aspects of Mycobacterium Tuberculosis Resistance to New Anti-Tuberculosis Drugs. Tuberculosis and Lung Diseases. 2023;101(4):87-93. (In Russ.) https://doi.org/10.58838/2075-1230-2023-101-4-87-93

Просмотров: 121


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)