Stages of Tuberculosis Infection, What's New? (Literature Review)
https://doi.org/10.58838/2075-1230-2025-103-2-93-101
Abstract
The review is based on 43 publications and it presents current information on variants of tuberculosis infection development in humans and preclinical manifestations of tuberculosis. It describes research trends aimed to develop tests to detect various states of interaction between the host and M. tuberculosis. The most epidemically important tests are those that can detect conditions very similar to tuberculosis and predict onset of tuberculosis in a short time allowing more effective and targeted preventive chemotherapy.
About the Authors
L. V. SlogotskayaRussian Federation
Ludmila V. Slogotskaya - Doctor of Medical Sciences, Head of Research Clinical Department
10 Stromynka St., Moscow, 107014
Phone: + 7 (499) 268-00-05
O. V. Lovacheva
Russian Federation
Olga V. Lovacheva - Doctor of Medical Sciences, Professor, Chief Researcher of Researcher Department of Differential Diagnosis and Treatment of Tuberculosis and Concurrent Infections
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Тел.+7 (495) 631-15-15
N. I. Klevno
Russian Federation
Nadezhda I. Klevno - Doctor of Medical Sciences, Professor, Head Researcher of Children and Adolescents Department
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Тел.+7 (495) 631-15-15
References
1. Kiselev V.I., Baranovsky P.M., Pupyshev S.A. et al. The new skin test for tuberculosis diagnostics based on recombinant protein of ESAT-CFP. Molekulyarnaya Meditsina, 2008, no. 4, pp. 4-6 (In Russ.)
2. Kudlay D.A. Scientific platform, development and implementation of effective immunodiagnosis of tuberculosis infection in the Russian Federation. Meditsinsky Akademichesky Journal, 2021. vol. 21, no. 1, pp. 75-84. (In Russ.) https://doi.org/10.17816/MAJ59248
3. Slogotskaya L.V., Bogorodskaya E.M., Sinitsyn M.V., Kudlay D.A., Shamuratova L.F., Sevostyanova T.A. Screening of tuberculosis infection with various options for the use of recombinant tuberculosis allergen in children and adolescents in Moscow. Pediatria n.a. G.N. Speransky, 2020, vol. 99, no. 2, pp. 136-146. (In Russ.) 10.24110/0031-403X-2020-99-2-136-146
4. Slogotskaya L.V., Bogorodskaya E.M., Shamuratova L.F., Sevostyanova T.A., Kudlay D.A., Nikolenko N.Yu. Specific manifestations of tuberculosis infection in different age groups in children and adolescents according to results of screening with 2 intradermal tests (with tuberculin and tuberculous recombinant allergen (CFP10-ESAT6)) in Moscow in 2023. Tuberculosis and Lung Diseases, 2024, vol. 102, no. 6, pp. 20-30. (In Russ.) https://doi.org/10.58838/2075-1230-2024-102-6-20-30
5. Belay M., Tulu B., Younis S., et al. Detection of Mycobacterium tuberculosis complex DNA in CD34-positive peripheral blood mononuclear cells of asymptomatic tuberculosis contacts: an observational study // Lancet Microbe. – 2021. – № 2. – Р. е267–e275. https://doi.org/10.1016/S2666-5247(21)00043-4
6. Cardona P. A dynamic reinfection hypothesis of latent tuberculosis infection // Infection. – 2009. – Vol. 37, № 2. – Р. 80-86.
7. Cole S., Brosch R., Parkhill J., et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence // Nature. – 1998. – Vol. 393. – P. 537-544
8. Dowdy D.W., Basu S., Andrews J.R. Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for tuberculosis // Am J Respir Crit Care Med. – 2013. – № 187. – Р. 543–551.
9. Drain P.K., Bajema K.L., Dowdy D., et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection // Clin Microbiol Rev. – 2018. – № 31. – Р. e00021-18. https://doi.org/10.1128/CMR.00021-18
10. Esmail H., Barry C.E. 3rd, Young D.B., et al. The ongoing challenge of latent tuberculosis // Philos Trans RSoc LondB Biol Sci. – 2014. – № 369. – Р. 20130437.
11. Esmail H., Cobelens F., Goletti D. Transcriptional biomarkers for predicting development of tuberculosis: progress and clinical considerations // Eur Respir J. – 2020. – № 55. – Р. 1901957 https://doi.org/10.1183/13993003.01957-2019
12. Esmail H., Dodd P.J., Houben R.M.G.J. Tuberculosis transmission during the subclinical period: could unrelated cough play a part? // Lancet Respir Med. – 2018. –№ 6. –Р. 244–246. https://doi.org/10.1016/S2213-2600(18)30105-X
13. Esmail H., Lai R.P., Lesosky M., Wilkinson K.A., Graham C.M., Coussens A.K., et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F] fluoro-D-glucose positron emission and computed tomography // Nat Med. – 2016. – Vol. 22, № 10. –Р. 1090–1093. https://doi.org/10.1038/nm.4161
14. Ganchua S.K.C., White A.G., Klein E.C., Flynn J.L. Lymph nodesthe neglected battlefield in tuberculosis // PLoS Pathog. – 2020. – Vol. 16, № 8. – Р. e1008632. https://doi.org/10.1371/journal.ppat.1008632
15. Getahun H., Matteelli A., Abubakar I., et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries // Eur Respir J. – 2015. – № 46. – Р. 1563–1576.
16. Ghesani N., Patrawalla A., Lardizabal A., Salgame P. Increased Cellular Activityin Thoracic Lymph Nodes in Early Human Latent Tuberculosis Infection // Am J Respir Crit Care Med. –2014. – Vol. 189, № 6. – Р. 748-50. https://doi.org/10.1164/rccm.201311-1976LE
17. Gliddon H.D., Kaforou M., Alikian M., Habgood-Coote D., Zhou C., Oni T., et al. Identification of reduced host transcriptomic signatures for tuberculosis disease and digital PCR-based validation and quantification // Front Immunol. – 2021. – № 12. – Р. 637164. https://doi.org/10.3389/fimmu.2021.637164
18. Goletti D., Delogu G., Matteelli A., Migliori G.B. The role of IGRA in the diagnosis of tuberculosis infection, differentiating from active tuberculosis, and decision making for initiating treatment or preventive therapy of tuberculosis infection // Int J Infect Dis. – 2022. – Vol. 124, Suppl. 1. – Р. S12-S19. https://doi.org/ https://doi.org/10.1016/j.ijid.2022.02.047
19. Hanthamrongwit J., Aruvornlop P., Saelee C., Wanta N., Poneksawat P., Soe P.T., et al. Peptide microarray-based identification of dormancy-associated Mycobacterium tuberculosis antigens inducing immune responses among latent tuberculosis infection individuals in Thailand // Sci Rep. –2023. – Vol. 13, № 1. – Р. 6978. https://doi.org/10.1038/s41598-023-34307-4
20. Kendall E.A., Shrestha S., Dowdy D.W. Reply to: subclinical tuberculosis: some flies in the ointment // Am J Respir Crit Care Med. – 2021. – № 203. – Р. 1328–1329. https://doi.org/10.1164/rccm.202102-0367LE
21. Krutikov M., Faust L., Nikolayevskyy V., Hamada Y., Gupta R.K., Cirillo D., Mateelli A., Korobitsyn A., Denkinger C.M., Rangaka M.X. The diagnostic performance of novel skin-based in-vivo tests for tuberculosis infection compared with purified protein derivative tuberculin skin tests and blood-based in vitro interferon-γ release assays: a systematic review and meta-analysis // Lancet Infect Dis. – 2021. – № 2. – Р. 250-264. https://doi.org/10.1016/S1473-3099(21)00261-9
22. Lee H.J., Kim N.H., Lee E.H., Yoon Y.S., Jeong Y.J., Lee B.C., et al. Multicenter testing of a simple molecular diagnostic system for the diagnosis of Mycobacterium tuberculosis // Biosensors (Basel). – 2023. – № 13. – Р. 259. https://doi.org/10.3390/bios13020259
23. Lewinsohn D.M., Lewinsohn D.A. New concepts in tuberculosis host defense // Clin Chest Med. – 2019. – № 40. – Р. 703-719. https://doi.org/10.1016/j.ccm.2019.07.002
24. Li Z., Hu Y., Wang W. , Zou Fa, Yang J. , Gao W., et al. Integrating pathogen- and host-derived blood biomarkers for enhanced tuberculosis diagnosis: a comprehensive review // Front Immunol. – № 15. –1438989. https://doi.org/10.3389/fimmu.2024.1438989
25. Lin P.L., Maiello P., Gideon H.P., Coleman M.T., Cadena A.M., Rodgers M.A., et al. PET CT Identifies Reactivation Risk in Cynomolgus Macaques with Latent M. tuberculosis // PLoS Pathog. – 2016. – Vol. 12, № 7. – Р. e1005739. https://doi.org/10.1371/journal.ppat.1005739
26. Lyu L., Li Z., Pan L., Jia H., Sun Q., Liu Q., et al. Evaluation of digital PCR assay in detection of M.tuberculosis IS6110 and IS1081 in tuberculosis patients plasma // BMC Infect Dis. – 2020. – № 20. – Р. 657. https://doi.org/10.1186/s12879-020-05375-y)
27. Mao L., Xu L., Wang X., Du J., Sun Q., Shi Z., et al. Use of DosR and Rpf antigens from Mycobacterium tuberculosis to screen for latent and relapse tuberculosis infection in a tuberculosis endemic community of Huainan City // Eur J Clin Microbiol Infect Dis. – 2022. – Vol. 41, № 7. – Р. 1039–49. https://doi.org/10.1007/s10096-022-04459-8
28. Mendelsohn S.C., Fiore-Gartland A., Penn-Nicholson A., et al. Validation of a host blood transcriptomic biomarker for pulmonary tuberculosis in people living with HIV: a prospective diagnostic and prognostic accuracy study // Lancet Glob Health. – 2021. – № 9. – Р. e841–e853.
29. Migliori G.B., Ong C.W.M., Petrone L., D’Ambrosio L., Centis R.,Goletti D. The definition of tuberculosis infection based on the spectrum of tuberculosis disease // Breathe. – 2021. – № 17. – Р. 210079 https://doi.org/10.1183/20734735.0079-2021.
30. Mitchison D. Basic mechanisms of chemotherapy // Chest. – 1979. – Vol. 76, № 6. – Р. 771-781.
31. Pereira V.B., da Cunha V.P.,Preisser T.M., Souza B.M., Turk M.Z., De Castro C.P., et al. Lactococcus lactis carrying a DNA vaccine coding for the ESAT-6 antigen increases IL-17 cytokine secretion and boosts the BCG vaccine immune response // J. Appl. Microbiol. – 2017. – № 122. – Р. 1657–1662. https://doi.org/10.1371/journal.pone.0228381
32. Safar H.A,. Mustafa A.S., Amoudy H.A., El-Hashim A. The effect of adjuvants and delivery systems on Th1, Th2, Th17 and Treg cytokine responses in mice immunized with Mycobacterium tuberculosis-specific proteins // PLoS ONE. – 2020. – № 15. – Р. e0228381 https://doi.org/10.1371/journal.pone.0228381
33. Scriba T.J., Fiore-Gartland A., Penn-Nicholson A., et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial // Lancet Infect Dis. – 2021. – № 21. – Р. 354–365. https://doi.org/10.1016/S1473-3099(20)30914-2
34. Tait D., Diacon A., Borges H. Á., et al. Safety and immunogenicity of the H56:IC31 tuberculosis vaccine candidate in adults successfully treated for drug-susceptible pulmonary tuberculosis: a phase 1 randomized trial // J Infect Dis. – 2024. – № 230. – Р. 1262-1270. https://doi.org/10.1093/infdis/jiae170
35. Thakur A., Pinto F.E., Hansen H.S., Andersen P., Christensen D., Janfelt C, Foged C. Intrapulmonary (i.pulmon.) Pull Immunization with the Tuberculosis Subunit Vaccine Candidate H56/CAF01 after Intramuscular (i.m.) Priming Elicits a Distinct Innate Myeloid Response and Activation of Antigen-Presenting Cells Than i.m. or i.pulmon. Prime Immunization Alone // Front. Immunol. –2020. – № 11. – Р. 803. https://doi.org/10.3389/fimmu.2020.00803
36. Tornack J., Reece S.T., Bauer W.M., et al.. Human and mouse hematopoietic stem cells are a depot for dormant Mycobacterium tuberculosis // PLoS One. – 2017. – № 12. – Р. e0169119. https://doi.org/10.1371/journal.pone.0169119
37. Wiker H.G., Mustafa T., Bjune G.A., et al. Evidence for waning of latency in a cohort study of tuberculosis // BMCInfectDis. –2010. – № 10. – Р. 37. https://doi.org/10.1186/1471-2334-10-37
38. World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis. Tests for tuberculosis infection. Geneva: World Health Organization; 2022. License: CC BY-NC-SA 3.0 IGO
39. World Health Organization. WHO operational handbook on tuberculosis. Module 1: prevention – tuberculosis preventive treatment. Geneva, World Health Organization, 2020. Available at: https://apps.who.int/iris/bitstream/handle/10665/331525/9789240002906-eng.pdf [Ассessed 10 Dec 2024].
40. Wu Y., Xiong Y., Zhong Y., Liao .J, Wang J. Role of dormancy survival regulator and resuscitation-promoting factors antigens in differentiating between active and latent tuberculosis: a systematic review and meta-analysis // BMC Pulm Med. – 2024. – Vol. 24, № 1. – Р. 541. https://doi.org/10.1186/s12890-024-03348-4
41. Yu W.Y., Lu P.X., Assadi M., Huang X.L., Skrahin A., Rosenthal А., Gabrielian A., Tartakovsky M., Wáng Y.X. Updates on 18F-FDG-PET/CT as a clinical tool for tuberculosis evaluation and therapeutic monitoring // Quant Imaging Med Surg. – 2019. Vol. 9, № 6. – Р. 1132-1146. https://doi.org/10.21037/qims.2019.05.24
42. Zak D.E., Penn-Nicholson A., Scriba T.J., et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study // Lancet. – 2016. – № 387. – Р. 2312–2322. https://doi.org/10.1016/S0140-6736(15)01316-1
43. Zhu B., Dockrell H.M., Ottenhoff T.H.M., Evans T.G., Zhang Y. Tuberculosis vaccines: Opportunities and challenges // Respirology. – 2018. – № 23. – Р. 359–368. https://doi.org/10.1111/соотв.13245
Review
For citations:
Slogotskaya L.V., Lovacheva O.V., Klevno N.I. Stages of Tuberculosis Infection, What's New? (Literature Review). Tuberculosis and Lung Diseases. 2025;103(2):93-101. (In Russ.) https://doi.org/10.58838/2075-1230-2025-103-2-93-101