Preview

Tuberculosis and Lung Diseases

Advanced search

Phenotypic Testing of Drug Susceptibility Spectrum of Mycobacterium tuberculosis Based on Mycobacteriophages

https://doi.org/10.58838/2075-1230-2025-103-6-88-95

Abstract

In recent years, much attention has been paid to phage technologies as promising methods for rapid testing of drug susceptibility of bacteria, including Mycobacterium tuberculosis. Mycobacteriophages are capable to infect specifically M. tuberculosis, which makes it possible to develop new effective, cost-efficient diagnostic tests, as well as fundamentally new drugs for tuberculosis treatment. This review analyzes twenty-seven publications describing main methods for testing the spectrum of drug susceptibility of M. tuberculosis based in mycobacteriophages. The advantages of these methods are the following: rapidness (results are obtained within 24-96 hours from the test start), and specificity (based on a strict host range of the phage). This allows for the rapid detection of M. tuberculosis and its susceptibility to anti-tuberculosis drugs. 

About the Authors

M. B. Lapenkova
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Marina B. Lapenkova - Candidate of Medical Sciences, Researcher of Research Laboratory of Immunopathology and Immunodiagnostics of Tuberculosis Infection

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



M. A. Vladimirskiy
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Mikhail A. Vladimirskiy - Doctor of Medical Sciences, Professor, Head of Research Laboratory of Immunopathology and Immunodiagnostics of Tuberculosis Infection

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



O. A. Rybina
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Olga A. Rybina - Research Assistant of Research Laboratory of Immunopathology and Immunodiagnostics of Tuberculosis Infection

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



References

1. Belyaev D.V., Vakhrusheva D.V., Vinokurov A.S. et al. Testirovaniye lekarstvennoy chuvstvitel'nosti klinicheskikh izolyatov Mycobacterium tuberculosis metodom proportsiy: metodicheskiye rekomendatsii. [Testing drug susceptibility of clinical isolates of Mycobacterium tuberculosis by the proportion method: guidelines]. Moscow, ROF Publ., 2022.

2. Eliseev P.I., Bayrakova A.L., Gandzhalyan T.A., Zorina V.V., Balantsev G.A., Maryandyshev A.O. Monitoring of mutations associated with drug resistance of Mycobacterium tuberculosis. Tuberculosis and Lung Diseases, 2025, vol. 103, no. 1, pp. 45-53. (In Russ.) https://doi.org/10.58838/2075-1230-2025-1031-45-53

3. Lapenkova M.B., Аrustamova G.A., Аlyapkina Yu.S., Filippov P.N., Lazebny S.V., Vladimirskiy M.A. Mycobacteriophage-based test system for phenotypic drug sensitivity of clinical isolates of tuberculous mycobacteria. Tuberculosis and Lung Diseases, 2020, vol. 98, no. 8, pp. 14-22. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-8-14-22

4. Banaiee N., Bobadilla-Del-Valle M., Bardarov S. Jr., Riska P.F., Small P.M., Ponce-De-Leon A., Jacobs W.R. Jr., Hatfull G.F., Sifuentes-Osornio J. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol., 2001, vol. 39, no. 11, pp. 3883-3888. https://doi.org/10.1128/JCM.39.1

5. Carrière C., Riska P.F., Zimhony O., Kriakov J., Bardarov S., Burns J., Chan J., Jacobs W.R. Jr. Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J. Clin. Microbiol., 1997, vol. 35, no. 12, pp. 3232-3239. https://doi.org/10.1128/jcm.35.12.3232-3239.1997

6. Dusthackeer A., Kumar V., Subbian S., Sivaramakrishnan G., Zhu G., Subramanyam B., Hassan S., Nagamaiah S., Chan J., Paranji Rama N. Construction and evaluation of luciferase reporter phages for the detection of active and non-replicating tubercle bacilli. J. Microbiol. Methods, 2008, vol. 73, no. 1, pp. 18-25. https://doi.org/10.1016/j.mimet.2008.01.005

7. Froman S., Will D.W., Bogen E. Bacteriophage active against virulent Mycobacterium tuberculosis. I. Isolation and activity. Am. J. Public Health Nations Health, 1954, vol. 44, no. 10, pp. 1326-1333. https://doi.org/10.2105/ajph.44.10.1326

8. Hatfull G.F. Molecular genetics of mycobacteriophages. Microbiol. Spectr., 2014, vol. 2, no. 2, pp. 1-36. https://doi.org/10.1128/microbiolspec. MGM2-0032-2013

9. Hatfull G.F. Mycobacteriophages: Genes and genomes. Annu. Rev. Microbiol., 2010, no. 64, pp. 331-356. https://doi.org/10.1146/annurev.micro.112408.134233

10. Hatfull G.F. Mycobacteriophages: windows into tuberculosis. PLoS Pathog., 2014, vol. 10, no. 3, pp. e1003953. https://doi.org/10.1371/journal. ppat.1003953

11. Hatfull G.F. The secret lives of mycobacteriophages. Adv. Virus. Res., 2012, no. 82, pp. 179-288. https://doi.org/10.1016/B978-0-12-394621-8.00015-7

12. Hosseiniporgham S., Sechi L.A. A review on mycobacteriophages: from classification to applications. Pathogens, 2022, vol. 11, no. 7, pp. 777. https://doi.org/10.3390/pathogens11070777

13. Jacobs W.R. Jr., Barletta R.G., Udani R., Chan J., Kalkut G., Sosne G., Kieser T., Sarkis G.J., Hatfull G.F., Bloom B.R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science, 1993, vol. 260, no. 5109, pp. 819-822. https://doi.org/10.1126/science.8484123

14. Kisa O., Albay A., Bedir O., Baylan O., Doganci L. Evaluation of FASTPlaqueTB-RIF for determination of rifampicin resistance in Mycobacterium tuberculosis complex isolates. Int. J. Tuberc. Lung Dis., 2003, vol. 7, no. 3, pp. 284-288.

15. Marei A.M., El-Behedy E.M., Mohtady H.A., Afify A.F. Evaluation of a rapid bacteriophage-based method for the detection of Mycobacterium tuberculosis in clinical samples. J. Med. Microbiol., 2003, vol. 52, no. pt 4, pp. 331-335. https://doi.org/10.1099/jmm.0.05091-0

16. McNerney R., Kambashi B.S., Kinkese J., Tembwe R., Godfrey-Faussett P. Development of a bacteriophage phage replication assay for diagnosis of pulmonary tuberculosis. J. Clin. Microbiol., 2004, vol. 42, no. 5, pp. 2115-2120. https://doi.org/10.1128/JCM.42.5.2115-2120.2004

17. McNerney R., Wilson S.M., Sidhu A.M. et al. Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as tool for the detection of viabl Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol., 1998, vol. 149, no. 7, pp. 487-495. https://doi.org/10.1016/s0923-2508(98)80003-x

18. Pearson R.E., Jurgensen S., Sarkis G.J., Hatfull G.F., Jacobs W.R. Jr. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene, 1996, vol. 183, no. 1-2, pp. 129-136. https://doi.org/10.1016/s0378-1119(96)00530-6

19. Pholwat S., Ehdaie B., Foongladda S., Kelly K., Houpt E. Real-time PCR using mycobacteriophage DNA for rapid phenotypic drug susceptibility results for Mycobacterium tuberculosis. J. Clin. Microbiol., 2012, vol. 50, no. 3, pp. 754-761. https://doi.org/10.1128/JCM.01315-11

20. Piuri M., Jacobs W.R. Jr., Hatfull G.F. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS One, 2009, vol. 4, no. 3, pp. e4870. https://doi.org/10.1371/journal.pone.0004870

21. Pope W.H., Jacobs-Sera D., Russell D.A., Peebles C.L., Al-Atrache Z., Alcoser T.A., Alexander L. M., Alfano M.B., Alford S.T., Amy N.E., Anderson M.D., Anderson A.G. et al. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One, 2011, vol. 6, no. 1, pp. e16329. https://doi.org/10.1371/journal.pone.0016329

22. Sarkis G.J., Jacobs W.R. Jr., Hatfull G.F. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol., 1995, vol. 15, no. 6, pp. 1055-67. https://doi.org/10.1111/j.1365-2958.1995.tb02281.x

23. Símboli N., Takiff H., McNerney R., López B., Martin A., Palomino J.C. et al. In-house phage amplification assay is a sound alternative for detecting rifampin-resistant Mycobacterium tuberculosis in low-resource settings. Antimicrob. Agents Chemother., 2005, vol. 49, no. 1, pp. 425-427. https://doi.org/10.1128/AAC.49.1.425-427.2005

24. The Actinobacteriophage. Database at PhagesDB.org. Available: http://phagesdb.org Accessed September 27, 2024

25. Urdániz E., Rondón L., Martí M.A., Hatfull G.F., Piuri M. Rapid whole-cell assay of antitubercular drugs using second-generation fluoromycobacteriophages. Antimicrob. Agents Chemother., 2016, vol. 60, no. 5, pp. 3253-3256. https://doi.org/10.1128/AAC.03016-15

26. Wilson S.M., al-Suwaidi Z., McNerney R., Porter J., Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat. Med., 1997, vol. 3, no. 4, pp. 465-468. https://doi.org/10.1038/nm0497-465

27. Xiao Y.X., Liu K.H., Lin W.H., Chan T.H. Whole-genome sequencing-based analyses of drug-resistant Mycobacterium tuberculosis from Taiwan. Sci. Rep., 2023, vol. 13, no. 1, pp. 2540. https://doi.org/10.1038/s41598-023-29652-3


Review

For citations:


Lapenkova M.B., Vladimirskiy M.A., Rybina O.A. Phenotypic Testing of Drug Susceptibility Spectrum of Mycobacterium tuberculosis Based on Mycobacteriophages. Tuberculosis and Lung Diseases. 2025;103(6):88-95. (In Russ.) https://doi.org/10.58838/2075-1230-2025-103-6-88-95

Views: 6


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)