Possibilities of Using Trehalose Probes for Detection of Mycobacterium tuberculosis
https://doi.org/10.58838/2075-1230-2025-103-6-96-103
Abstract
Trehalose probes seem to be a promising area of tuberculosis diagnosis, these probes are capable of selectively penetrating Mycobacterium tuberculosis. These probes generate a fluorescent signal, enabling detection of mycobacteria. To analyze the current state of knowledge and prospects of trehalose probes as a new approach for rapid detection of Mycobacterium tuberculosis, a systematic review of scientific literature was conducted. The main types of probes include fluorogenic probes, "fluorophore-quencher" based probes, and photoactivatable probes. Trehalose probes enable selective detection of mycobacteria due to specific trehalose uptake and incorporation into the cell wall, followed by fluorescence activation. These probes allow for the detection of mycobacteria in sputum samples without complex sample preparation or washing. The method allows differentiation of viable and non-viable cells and can also be applied for drug susceptibility testing.
About the Authors
O. A. AmbartsumyanRussian Federation
Oganes A. Ambartsumyan - Junior Researcher of Research Microbiology Laboratory, Researcher of Laboratory of Nonequilibrium Electronic Processes
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15
P. I. Eliseev
Russian Federation
Platon I. Eliseev - Candidate of Medical Sciences, Head of Microbiology Research Laboratory
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15
O. A. Skuredina
Russian Federation
Olesya A. Skuredina - Researcher of Microbiology Research Laboratory
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15
E. Yu. Gosteva
Russian Federation
Ekaterina Yu. Gosteva - Junior Researcher of Microbiology Research Laboratory
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15
A. G. Samoylova
Russian Federation
Anastasiya G. Samoylova - Doctor of Medical Sciences, Deputy Director for Research
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15
I. A. Vasilyeva
Russian Federation
Irina A. Vasilyeva - Doctor of Medical Sciences, Professor, Director, Head of Phthisiology Department, Clinical Medicine Institute, Pirogov Russian National Research Medical University, Russian Ministry of Health
Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15
References
1. Vasilyeva I.A. Achievements and prospects of innovative research in the field of phthisiology. Herald of the Russian Academy of Sciences, 2025, no. 1, pp. 63-74. (In Russ.) https://doi.org/10.31857/S0869587325010063
2. Vakhrusheva D.V., Vasilyeva I.A. About the standardization and quality of laboratory tests aimed at diagnostics and monitoring of tuberculosis chemotherapy. Tuberculosis and Lung Diseases, 2018, vol. 96, no. 9, pp. 57-62. (In Russ.) https://doi.org/10.21292/2075-1230-2018-96-9-57-62
3. Martynov V.I., Pakhomov A.A. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russian Chemical Reviews, 2021, vol. 90, no. 10, pp. 1213-1262. (In Russ.)
4. Babu Sait M.R., Koliwer-Brandl H., Stewart J.A., Swarts B., Jacobsen M., Ioerger T., Kalscheuer R. PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis. Sci. Rep., 2022, vol. 12, no. 1, pp. 2097. https://doi.org/10.1038/s41598-022-06109-7
5. Backus K.M., Boshoff H.I., Barry C.S., Boutureira O., Patel M.K., D'Hooge F., Lee S.S., Via L.E., Tahlan K., Barry C.E. et al. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol., 2011, vol. 7, no. 4, pp. 228-235. https://doi.org/10.1038/nchembio.539
6. Banahene N., Gepford D.M., Biegas K.J., Swanson D.H., Hsu Y.P., Murphy B.A., Taylor Z.E., Lepori I., Siegrist M.S., Obregón-Henao A. et al. A far-red molecular rotor fluorogenic trehalose probe for live mycobacteria detection and drug-susceptibility testing. Angew. Chem. Int. Ed., 2023, vol. 62, no. 2, pp. 202213563. https://doi.org/10.1002/anie.202213563
7. Brown T., Chavent M., Im W. Molecular modeling and simulation of the mycobacterial cell envelope: from individual components to cell envelope assemblies. J. Phys. Chem. B., 2023, vol. 127, no. 51, pp. 10941-10949. https://doi.org/10.1021/acs.jpcb.3c06136
8. Chen W.C., Chang C.C., Lin Y.E. Pulmonary tuberculosis diagnosis using an intelligent microscopy scanner and image recognition model for improved acid-fast bacilli detection in smears. Microorganisms, 2024, vol. 12, no. 8, pp. 1734. https://doi.org/10.3390/microorganisms12081734
9. Dinnes J., Deeks J., Kunst H., Gibson A., Cummins E., Waugh N., Drobniewski F., Lalvani A. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess., 2007, vol. 11, no. 3, pp. 1-196. https://doi.org/10.3310/hta11030
10. Dong B., He Z., Li Y., Xu X., Wang C., Zeng J. Improved conventional and new approaches in the diagnosis of tuberculosis. Front. Microbiol., 2022, no. 13, pp. 924410. https://doi.org/10.3389/fmicb.2022.924410
11. Eke I.E., Abramovitch R.B. Functions of nitroreductases in mycobacterial physiology and drug susceptibility. J. Bacteriol., 2025, no. 207, pp. e0032624. https://doi.org/10.1128/jb.00326-24
12. Geng P., Hong X., Li X., Ni D., Liu G. Optimization of nitrofuranyl calanolides for the fluorescent detection of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2022, no. 244, pp. 114835. https://doi.org/10.1016/j.ejmech.2022.114835
13. Hong X., Geng P., Tian N., Li X., Gao M., Nie L., Sun Z., Liu G. From bench to clinic: A nitroreductase Rv3368c-responsive cyanine-based probe for the specific detection of live Mycobacterium tuberculosis. Anal. Chem., 2024, vol. 96, no. 4, pp. 1576-1586. https://doi.org/10.1021/acs.analchem.3c04293
14. Kalscheuer R., Koliwer-Brandl H. Genetics of mycobacterial trehalose metabolism. Microbiol. Spectr., 2014, no. 3, pp. MGM2-0002-2013. https://doi.org/10.1128/microbiolspec.MGM2-0002-2013
15. Kamariza M., Keyser S.G.L., Utz A., Knapp B.D., Ealand C., Ahn G., Cambier C.J., Chen T., Kana B., Huang K.C., Bertozzi C.R. Toward point-of-care detection of Mycobacterium tuberculosis: a brighter solvatochromic probe detects mycobacteria within minutes. JACS Au., 2021, no. 9, pp. 1368-1379. https://doi.org/10.1021/jacsau.1c00173
16. Kamariza M., Shieh P., Bertozzi C.R. Imaging Mycobacterial Trehalose Glycolipids. In: Methods in Enzymology. 1st ed. Imperiali B., eds. Academic Press, New York, NY, USA, 2018, рр. 355-369.
17. Kamariza M., Shieh P., Ealand C.S., Peters J.S., Chu B., Rodriguez-Rivera F.P., Babu Sait M.R., Treuren W.V., Martinson N., Kalscheuer R. et al. Rapid detection of Mycobacterium tuberculosis in sputum with a solvatochromic trehalose probe. Sci. Transl. Med., 2018, vol. 10, no. 430, pp. eaam6310. https://doi.org/10.1126/scitranslmed.aam6310
18. Kobayashi H., Ogawa M., Alford R., Choyke P.L., Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 2010, vol. 110, no. 5, pp. 2620-2640. https://doi.org/10.1021/cr900263j
19. Kumar G., Narayan R., Kapoor S. Chemical tools for illumination of tuberculosis biology, virulence mechanisms, and diagnosis. J. Med. Chem., 2020, vol. 63, no. 24, pp. 15308-15332. https://doi.org/10.1021/acs.jmedchem.0c01337
20. Li Y.X., Xie D.T., Yang Y.X., Chen Z., Guo W.Y., Yang W.C. Development of small-molecule fluorescent probes targeting enzymes. Molecules, 2022, vol. 27, no. 14, pp. 4501. https://doi.org/10.3390/molecules27144501
21. Liu G., Li X., Hong X., Geng P., Sun Z. Detecting Mycobacterium tuberculosis using a nitrofuranyl calanolide-trehalose probe based on nitroreductase Rv2466c. Chem. Commun., 2021, vol. 97, no. 57, pp. 12688-12691. https://doi.org/10.1039/d1cc05187c
22. Liyanage S.H., Raviranga N.G.H., Ryan J.G., Shell S.S., Ramström O., Kalscheuer R., Yan M. azide-masked fluorescence turn-on probe for imaging mycobacteria. JACS Au., 2023, vol. 3, no. 4, pp. 1017-1028. https://doi.org/10.1021/jacsau.2c00449
23. Mu R., Kong C., Yu W., Wang H., Ma Y., Li X., Wu J., Somersan-Karakaya S., Li H., Sun Z. et al. A nitrooxidoreductase Rv2466c-dependent fluorescent probe for rapid Mycobacterium tuberculosis diagnosis and drug susceptibility testing. ACS Infect. Dis., 2019, no. 5, pp. 1210-1219. https://doi.org/10.1021/acsinfecdis.9b00006
24. Murugasu-Oei B., Tay A., Dick T. Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase Mycobacterium smegmatis. Mol. Gen. Genet., 1999, vol. 262, no. 4-5, pp. 677-682. https://doi.org/10.1007/s004380051130
25. Negri A., Javidnia P., Mu R., Zhang X., Vendome J., Gold B., Roberts J., Barman D., Ioerger T., Sacchettini J.C. et al. Identification of a mycothiol-dependent nitroreductase from Mycobacterium tuberculosis. ACS Infect. Dis., 2018, no. 4, pp. 771-787. https://doi.org/10.1021/acsinfecdis.7b00111
26. Rodriguez-Rivera F.P., Zhou X., Theriot J.A., Bertozzi C.R. Visualization of mycobacterial membrane dynamics in live cells. J. Am. Chem. Soc., 2017, vol. 139, no. 9, pp. 3488-3491
27. Stavropoulou K., Papanastasiou I.P. Overview of small molecules as fluorescent probes of Mycobacterium tuberculosis. ACS Omega, 2024, no. 9, pp. 31220-31227. https://doi.org/10.1021/acsomega.4c01992
28. Steingart K.R., Henry M., Ng V., Hopewell P., Ramsay A., Cunningham J., Urbanczik R., Perkins M., Aziz M., Pai M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis., 2006, no. 6, pp. 570-581. https://doi.org/10.1016/S1473-3099(06)70578-3
29. Swarts B.M., Holsclaw C.M., Jewett J.C., Alber M., Fox D.M., Siegrist M.S., Leary J.A., Kalscheuer R., Bertozzi C.R. Probing the mycobacterial trehalome with bioorthogonal chemistry. J. Am. Chem. Soc., 2012, vol. 134, no. 9, pp. 16123-16126.
30. Verschoor J.A., Baird M.S., Grooten J. Toward understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog. Lipid Res., 2012, vol. 51, no. 4, pp. 325-339. https://doi.org/10.1016/j.plipres.2012.05.002
31. Wells W.A., Boehme C.C., Cobelens F.G., Daniels C., Dowdy D., Gardiner E., Gheuens J., Kim P., Kimerling M., Kreiswirth B. et al. Alignment of new tuberculosis drug regimens and DST: a framework for action. Lancet Infect. Dis., 2013, no. 13, pp. 449-458. https://doi.org/10.1016/S1473-3099(13)70025-2
32. World Health Organization. Global tuberculosis report, 2024. Geneva, World Health Organization, 2024.
33. World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis. Geneva, World Health Organization, 2025.
34. Wu Q., Zhu Y., Zhang Y., Liu Z., Zhang M., Chen J., Wu B. Evaluation and comparison of laboratory methods in diagnosing Mycobacterium tuberculosis and Nontuberculous Mycobacteria in 3012 Sputum Samples. Clin. Respir. J., 2025, no. 19, pp. e70071. https://doi.org/10.1111/crj.70071
35. Yang Z., Li J., Shen J., Cao H., Wang Y., Hu S., Du Y., Wang Y., Yan Z., Xie L. et al. Recent progress in tuberculosis diagnosis: insights into blood-based biomarkers and emerging technologies. Front. Cell. Infect. Microbiol., 2025, pp. 15, pp. 1567592. https://doi.org/10.3389/fcimb.2025.1567592
36. Yuan L., Lin W., Zheng K., Zhu S. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc. Chem. Res., 2013, no. 46, pp. 1462-1473. https://doi.org/10.1021/ar300273v
Review
For citations:
Ambartsumyan O.A., Eliseev P.I., Skuredina O.A., Gosteva E.Yu., Samoylova A.G., Vasilyeva I.A. Possibilities of Using Trehalose Probes for Detection of Mycobacterium tuberculosis. Tuberculosis and Lung Diseases. 2025;103(6):96-103. (In Russ.) https://doi.org/10.58838/2075-1230-2025-103-6-96-103




































