Preview

Tuberculosis and Lung Diseases

Advanced search

Possibilities of Using Trehalose Probes for Detection of Mycobacterium tuberculosis

https://doi.org/10.58838/2075-1230-2025-103-6-96-103

Abstract

Trehalose probes seem to be a promising area of tuberculosis diagnosis, these probes are capable of selectively penetrating Mycobacterium tuberculosis. These probes generate a fluorescent signal, enabling detection of mycobacteria. To analyze the current state of knowledge and prospects of trehalose probes as a new approach for rapid detection of Mycobacterium tuberculosis, a systematic review of scientific literature was conducted. The main types of probes include fluorogenic probes, "fluorophore-quencher" based probes, and photoactivatable probes. Trehalose probes enable selective detection of mycobacteria due to specific trehalose uptake and incorporation into the cell wall, followed by fluorescence activation. These probes allow for the detection of mycobacteria in sputum samples without complex sample preparation or washing. The method allows differentiation of viable and non-viable cells and can also be applied for drug susceptibility testing. 

About the Authors

O. A. Ambartsumyan
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health; Osipyan Institute of Solid State Physics, Russian Academy of Sciences
Russian Federation

Oganes A. Ambartsumyan - Junior Researcher of Research Microbiology Laboratory, Researcher of Laboratory of Nonequilibrium Electronic Processes

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



P. I. Eliseev
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Platon I. Eliseev - Candidate of Medical Sciences, Head of Microbiology Research Laboratory

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



O. A. Skuredina
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Olesya A. Skuredina - Researcher of Microbiology Research Laboratory

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



E. Yu. Gosteva
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Ekaterina Yu. Gosteva - Junior Researcher of Microbiology Research Laboratory

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



A. G. Samoylova
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Anastasiya G. Samoylova - Doctor of Medical Sciences, Deputy Director for Research

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



I. A. Vasilyeva
National Medical Research Center of Phthisiopulmonology and Infectious Diseases, Russian Ministry of Health
Russian Federation

Irina A. Vasilyeva - Doctor of Medical Sciences, Professor, Director, Head of Phthisiology Department, Clinical Medicine Institute, Pirogov Russian National Research Medical University, Russian Ministry of Health 

Build. 2, 4 Dostoevskiy St., Moscow, 127473
Phone: +7 (495) 631-15-15



References

1. Vasilyeva I.A. Achievements and prospects of innovative research in the field of phthisiology. Herald of the Russian Academy of Sciences, 2025, no. 1, pp. 63-74. (In Russ.) https://doi.org/10.31857/S0869587325010063

2. Vakhrusheva D.V., Vasilyeva I.A. About the standardization and quality of laboratory tests aimed at diagnostics and monitoring of tuberculosis chemotherapy. Tuberculosis and Lung Diseases, 2018, vol. 96, no. 9, pp. 57-62. (In Russ.) https://doi.org/10.21292/2075-1230-2018-96-9-57-62

3. Martynov V.I., Pakhomov A.A. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russian Chemical Reviews, 2021, vol. 90, no. 10, pp. 1213-1262. (In Russ.)

4. Babu Sait M.R., Koliwer-Brandl H., Stewart J.A., Swarts B., Jacobsen M., Ioerger T., Kalscheuer R. PPE51 mediates uptake of trehalose across the mycomembrane of Mycobacterium tuberculosis. Sci. Rep., 2022, vol. 12, no. 1, pp. 2097. https://doi.org/10.1038/s41598-022-06109-7

5. Backus K.M., Boshoff H.I., Barry C.S., Boutureira O., Patel M.K., D'Hooge F., Lee S.S., Via L.E., Tahlan K., Barry C.E. et al. Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat. Chem. Biol., 2011, vol. 7, no. 4, pp. 228-235. https://doi.org/10.1038/nchembio.539

6. Banahene N., Gepford D.M., Biegas K.J., Swanson D.H., Hsu Y.P., Murphy B.A., Taylor Z.E., Lepori I., Siegrist M.S., Obregón-Henao A. et al. A far-red molecular rotor fluorogenic trehalose probe for live mycobacteria detection and drug-susceptibility testing. Angew. Chem. Int. Ed., 2023, vol. 62, no. 2, pp. 202213563. https://doi.org/10.1002/anie.202213563

7. Brown T., Chavent M., Im W. Molecular modeling and simulation of the mycobacterial cell envelope: from individual components to cell envelope assemblies. J. Phys. Chem. B., 2023, vol. 127, no. 51, pp. 10941-10949. https://doi.org/10.1021/acs.jpcb.3c06136

8. Chen W.C., Chang C.C., Lin Y.E. Pulmonary tuberculosis diagnosis using an intelligent microscopy scanner and image recognition model for improved acid-fast bacilli detection in smears. Microorganisms, 2024, vol. 12, no. 8, pp. 1734. https://doi.org/10.3390/microorganisms12081734

9. Dinnes J., Deeks J., Kunst H., Gibson A., Cummins E., Waugh N., Drobniewski F., Lalvani A. A systematic review of rapid diagnostic tests for the detection of tuberculosis infection. Health Technol. Assess., 2007, vol. 11, no. 3, pp. 1-196. https://doi.org/10.3310/hta11030

10. Dong B., He Z., Li Y., Xu X., Wang C., Zeng J. Improved conventional and new approaches in the diagnosis of tuberculosis. Front. Microbiol., 2022, no. 13, pp. 924410. https://doi.org/10.3389/fmicb.2022.924410

11. Eke I.E., Abramovitch R.B. Functions of nitroreductases in mycobacterial physiology and drug susceptibility. J. Bacteriol., 2025, no. 207, pp. e0032624. https://doi.org/10.1128/jb.00326-24

12. Geng P., Hong X., Li X., Ni D., Liu G. Optimization of nitrofuranyl calanolides for the fluorescent detection of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2022, no. 244, pp. 114835. https://doi.org/10.1016/j.ejmech.2022.114835

13. Hong X., Geng P., Tian N., Li X., Gao M., Nie L., Sun Z., Liu G. From bench to clinic: A nitroreductase Rv3368c-responsive cyanine-based probe for the specific detection of live Mycobacterium tuberculosis. Anal. Chem., 2024, vol. 96, no. 4, pp. 1576-1586. https://doi.org/10.1021/acs.analchem.3c04293

14. Kalscheuer R., Koliwer-Brandl H. Genetics of mycobacterial trehalose metabolism. Microbiol. Spectr., 2014, no. 3, pp. MGM2-0002-2013. https://doi.org/10.1128/microbiolspec.MGM2-0002-2013

15. Kamariza M., Keyser S.G.L., Utz A., Knapp B.D., Ealand C., Ahn G., Cambier C.J., Chen T., Kana B., Huang K.C., Bertozzi C.R. Toward point-of-care detection of Mycobacterium tuberculosis: a brighter solvatochromic probe detects mycobacteria within minutes. JACS Au., 2021, no. 9, pp. 1368-1379. https://doi.org/10.1021/jacsau.1c00173

16. Kamariza M., Shieh P., Bertozzi C.R. Imaging Mycobacterial Trehalose Glycolipids. In: Methods in Enzymology. 1st ed. Imperiali B., eds. Academic Press, New York, NY, USA, 2018, рр. 355-369.

17. Kamariza M., Shieh P., Ealand C.S., Peters J.S., Chu B., Rodriguez-Rivera F.P., Babu Sait M.R., Treuren W.V., Martinson N., Kalscheuer R. et al. Rapid detection of Mycobacterium tuberculosis in sputum with a solvatochromic trehalose probe. Sci. Transl. Med., 2018, vol. 10, no. 430, pp. eaam6310. https://doi.org/10.1126/scitranslmed.aam6310

18. Kobayashi H., Ogawa M., Alford R., Choyke P.L., Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev., 2010, vol. 110, no. 5, pp. 2620-2640. https://doi.org/10.1021/cr900263j

19. Kumar G., Narayan R., Kapoor S. Chemical tools for illumination of tuberculosis biology, virulence mechanisms, and diagnosis. J. Med. Chem., 2020, vol. 63, no. 24, pp. 15308-15332. https://doi.org/10.1021/acs.jmedchem.0c01337

20. Li Y.X., Xie D.T., Yang Y.X., Chen Z., Guo W.Y., Yang W.C. Development of small-molecule fluorescent probes targeting enzymes. Molecules, 2022, vol. 27, no. 14, pp. 4501. https://doi.org/10.3390/molecules27144501

21. Liu G., Li X., Hong X., Geng P., Sun Z. Detecting Mycobacterium tuberculosis using a nitrofuranyl calanolide-trehalose probe based on nitroreductase Rv2466c. Chem. Commun., 2021, vol. 97, no. 57, pp. 12688-12691. https://doi.org/10.1039/d1cc05187c

22. Liyanage S.H., Raviranga N.G.H., Ryan J.G., Shell S.S., Ramström O., Kalscheuer R., Yan M. azide-masked fluorescence turn-on probe for imaging mycobacteria. JACS Au., 2023, vol. 3, no. 4, pp. 1017-1028. https://doi.org/10.1021/jacsau.2c00449

23. Mu R., Kong C., Yu W., Wang H., Ma Y., Li X., Wu J., Somersan-Karakaya S., Li H., Sun Z. et al. A nitrooxidoreductase Rv2466c-dependent fluorescent probe for rapid Mycobacterium tuberculosis diagnosis and drug susceptibility testing. ACS Infect. Dis., 2019, no. 5, pp. 1210-1219. https://doi.org/10.1021/acsinfecdis.9b00006

24. Murugasu-Oei B., Tay A., Dick T. Upregulation of stress response genes and ABC transporters in anaerobic stationary-phase Mycobacterium smegmatis. Mol. Gen. Genet., 1999, vol. 262, no. 4-5, pp. 677-682. https://doi.org/10.1007/s004380051130

25. Negri A., Javidnia P., Mu R., Zhang X., Vendome J., Gold B., Roberts J., Barman D., Ioerger T., Sacchettini J.C. et al. Identification of a mycothiol-dependent nitroreductase from Mycobacterium tuberculosis. ACS Infect. Dis., 2018, no. 4, pp. 771-787. https://doi.org/10.1021/acsinfecdis.7b00111

26. Rodriguez-Rivera F.P., Zhou X., Theriot J.A., Bertozzi C.R. Visualization of mycobacterial membrane dynamics in live cells. J. Am. Chem. Soc., 2017, vol. 139, no. 9, pp. 3488-3491

27. Stavropoulou K., Papanastasiou I.P. Overview of small molecules as fluorescent probes of Mycobacterium tuberculosis. ACS Omega, 2024, no. 9, pp. 31220-31227. https://doi.org/10.1021/acsomega.4c01992

28. Steingart K.R., Henry M., Ng V., Hopewell P., Ramsay A., Cunningham J., Urbanczik R., Perkins M., Aziz M., Pai M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect. Dis., 2006, no. 6, pp. 570-581. https://doi.org/10.1016/S1473-3099(06)70578-3

29. Swarts B.M., Holsclaw C.M., Jewett J.C., Alber M., Fox D.M., Siegrist M.S., Leary J.A., Kalscheuer R., Bertozzi C.R. Probing the mycobacterial trehalome with bioorthogonal chemistry. J. Am. Chem. Soc., 2012, vol. 134, no. 9, pp. 16123-16126.

30. Verschoor J.A., Baird M.S., Grooten J. Toward understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog. Lipid Res., 2012, vol. 51, no. 4, pp. 325-339. https://doi.org/10.1016/j.plipres.2012.05.002

31. Wells W.A., Boehme C.C., Cobelens F.G., Daniels C., Dowdy D., Gardiner E., Gheuens J., Kim P., Kimerling M., Kreiswirth B. et al. Alignment of new tuberculosis drug regimens and DST: a framework for action. Lancet Infect. Dis., 2013, no. 13, pp. 449-458. https://doi.org/10.1016/S1473-3099(13)70025-2

32. World Health Organization. Global tuberculosis report, 2024. Geneva, World Health Organization, 2024.

33. World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis. Geneva, World Health Organization, 2025.

34. Wu Q., Zhu Y., Zhang Y., Liu Z., Zhang M., Chen J., Wu B. Evaluation and comparison of laboratory methods in diagnosing Mycobacterium tuberculosis and Nontuberculous Mycobacteria in 3012 Sputum Samples. Clin. Respir. J., 2025, no. 19, pp. e70071. https://doi.org/10.1111/crj.70071

35. Yang Z., Li J., Shen J., Cao H., Wang Y., Hu S., Du Y., Wang Y., Yan Z., Xie L. et al. Recent progress in tuberculosis diagnosis: insights into blood-based biomarkers and emerging technologies. Front. Cell. Infect. Microbiol., 2025, pp. 15, pp. 1567592. https://doi.org/10.3389/fcimb.2025.1567592

36. Yuan L., Lin W., Zheng K., Zhu S. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc. Chem. Res., 2013, no. 46, pp. 1462-1473. https://doi.org/10.1021/ar300273v


Review

For citations:


Ambartsumyan O.A., Eliseev P.I., Skuredina O.A., Gosteva E.Yu., Samoylova A.G., Vasilyeva I.A. Possibilities of Using Trehalose Probes for Detection of Mycobacterium tuberculosis. Tuberculosis and Lung Diseases. 2025;103(6):96-103. (In Russ.) https://doi.org/10.58838/2075-1230-2025-103-6-96-103

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)