ANALYSIS OF ASSOCIATIONS OF POLYMORPHOUS VARIANTS OF GENES-CANDIDATES OF MULTI-FACTORIAL DISEASES WITH PULMONARY TUBERCULOSIS
Abstract
About the Authors
N. P. BabushkinaRussian Federation
Tomsk
S. V. Buykin
Russian Federation
Tomsk
E. Yu. Bragina
Russian Federation
Tomsk
N. V. Tarasenko
Russian Federation
Tomsk
A. A. Rudko
Russian Federation
Tomsk
A. N. Kucher
Russian Federation
Tomsk
References
1. Аn А.R., Rudko А.А., Bragina E.Yu. et al. The study of association of polymorphous variants of cytokine signal genes with pulmonary tuberculosis. Tub., 2013, vol. 90, no. 8, pp. 34-39. (In Russ.)
2. Vizel’ А.А., Yaushev M.F., Mustafin R.R. et al. Broncholytic action of dosed aerosol in active respiratory tuberculosis. Probl. Tub., 1995, no. 2, pp. 7-9. (In Russ.)
3. Kucher А.N., Babushkina N.P., Markova V.V. et al. Changeability of polymorphous variants of gene-candidates of cardiac vascular diseases in the representatives of four ethnic groups of the Siberian region. Med. Genetika, 2010, no. 5, pp. 24-34. (In Russ.)
4. Kucher А.N., Babushkina N.P., Tarasenko N.V. et al. Changeability of polymorphous variants of tumor necrosis factors genes and its receptors in the representatives of four ethnic groups of the Siberian region. Med. Genetika, 2010, no. 6, pp. 16-23. (In Russ.)
5. Kucher А.N., Babushkina N.P., Kulish E.V.et al. Description of changeability of four polymorphous variants (rs2069705, rs17880053, rs11126176 и rs804271) in the representatives of four ethnic groups of the Siberian region. Accepted for publication (Genetika).
6. Kucher А.N., Babushkina N.P., Bragina E.Yu. et al. Changeability of four polymorphous variants of interleukins and their receptors in the representatives of four ethnic groups of the Siberian region. Med. Genetika, 2009, vol. 10, pp. 43-52. (In Russ.)
7. Lakin G.F. Biometriya: Ucheb. posobie dlya biol. spets. VUZov.[Biometry. Manual for university specialists in biology]. 4th Edition, reviewed and supplemented, Moscow, Vyssh, Shk. Publ., 1990, 352 p.
8. Lil’in E.T., Trubnikov V.I., Vanyukov M.M. Vvedenie v sovremennuyu farmakogenetiku. [Introduction into modern pharmacogenetics]. Moscow, Meditsina Publ., 1984, 160 p.
9. Rudko А.А., Freydin M.B., Bragina E.Yu. et al. Searching of genes of susceptibility to tuberculosis with the use of results of full genome study of Crohn’s disease. Bulleten’ Sibirskoy Meditsiny, 2013, vol. 12, no. 3, pp. 61-68. (In Russ.)
10. Rudko А.А., Freydin M.B., Puzyrev V.P. Inheritable susceptibility to tuberculosis. Molekulyarnaya Meditsina, 2011, no. 3, pp. 3-10. (In Russ.)
11. Shilova M.V. Tuberkulez v Rossii v 2011 godu. [Tuberculosis in Russia in 2011]. Rostov-on-Don, Feniks Publ., 2013, 224 p.
12. Abebe F., Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin. Exp.Immunol., 2009, vol. 157, no. 2, pp. 235-243.
13. Abel L., El-Baghdadi J., Bousfiha A.A. et al. Human genetics of tuberculosis: a long and winding road. Phil. Trans. R. Soc. B., 2014, vol. 369: 2030428,
14. Ahmadi K.R., Weale M.E., Xue Z.Y. et al. A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat.Genet. 2005, vol. 37, pp. 84-89.
15. Alam M.S., Akaike T., Okamoto S. et al. Role of nitric oxide in host dense in murine Salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect. and Immun., 2002, vol. 70, pp. 3130-3142.
16. Al-Muhsen S., Casanova J.L. 2008. The genetic heterogeneity of Mendelian susceptibility to mycobacterial diseases. J. Allergy Clin. Immunol., vol. 122, pp. 1043-1053.
17. Azouaou N., Petrofsky M., Young L.S. et al. Mycobacterium avium infection in mice is associated with time-related expression of Th1 and Th2 CD4 T-lymphocyte response. Immunology, 1997, vol. 91, pp. 414-420.
18. Belenky S.N., Robbins R.A., Rubinstein I. Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro. J. Leukoc. Biol., 1993, vol. 53, pp. 498-503.
19. Blumenthal M.N., Namboodiri K.K, Mendell N. et al. Genetic transmission of serum IgE levels. Am., J. Med. Genet., 1981, vol. 10, pp. 219-228.
20. Bustamante J., Boisson-Dupuis S., Abel L. et al. Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN-г immunity. Semin. Immunol., 2014, vol. 26, no. 6, pp. 454-470.
21. Chan E.D., Chan J., Schluger N.W. What is the role of nitric oxide in murine and human host defense against tuberculosis? Am. J. Respir. Cell. Mol. Biol., 2001, vol. 25, pp. 606-612.
22. Cherla R.P., Ganju R.K. Stromal cell-derived factor 1 alpha-induced chemotaxis in T cells is mediated by nitric oxide signaling pathways. J. Immunol., 2001, vol. 166, pp. 3067-3074.
23. Cobat A., Orlova M., Barrera L.F. et al. Host genomics and control of tuberculosis infection. Public Health Genomics, 2013, vol. 16, pp. 44-49.
24. Garcia-Elorriaga G., Carrillo-Montes G., Mendoza-Aguilar M., González-Bonilla C. Polymorphisms in tumor necrosis factor and lymphotoxin A in tuberculosis without and with response to treatment. Inflammation, 2010, vol. 33, pp. 267-75.
25. Goldman D., Cho Y., Zhao M. et al. Expression of inducible nitric oxide synthase in rat pulmonary Cryptococcus neoformans granulomas. Am. J. Pathol., 1996, vol. 148, pp. 1275-1282.
26. Hernandez-Pando R., Orozcoe H., Sampieri A. et al. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology, 1996, vol. 89, pp. 26-33.
27. Iuvone T., Carnuccio R., DiRosa M. Modulation of granuloma formation by endogenous nitric oxide. Eur. J. Pharmacol., 1994, vol. 265, pp. 89-92.
28. Joshi M.S., Mineo C., Shaul P.W. et al. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered calveolar localization and impaired response to shear. FASEB J., 2007, vol. 21, pp. 2655-2663.
29. Jung J.Y., Madan-Lala R., Georgieva M. et al. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect. Immun., 2013, vol. 81, no. 9, pp. 3198-3209.
30. Moller M., de Wit E., Hoal E.G. Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol. Med. Microbiol., 2009, vol. 2, pp. 1-24.
31. Moller M., Hoal E.G. Current findings, challenges and novel approaches in human genetic susceptibility to tuberculosis. Tuberculosis, 2010, vol. 90, pp. 71-83.
32. Morris J.A., Gardner M.J. Statistics in Medicine: Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br. Med.J. (Clin. Res. Ed.), 1988, vol. 296, pp. 1313-1316.
33. Murray H.W., Nathan C.F. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J. Exp. Med., 1999, vol. 189, pp. 741-746.
34. Oliveira D.M., Silva-Teixeira D.N., Gustavson S. et al. Nitric oxide interaction
35. with IL-10, MIP-1alpha, MCP-1 and RANTES over the in vitro granuloma formation against different Schistosoma mansoni antigenic preparations on human schistosomiasis. Parasitology, 2000, vol. 120, pp. 391-398.
36. Orme I.M., Roberts A.D., Griffin J.P. et al. Cytokine secretion by CD4 T symphocytes acquired in response to Mycobacterium tuberculosis infection. J.Immunol., 1993, vol. 141, pp. 518-525.
37. Power C.A., Wei G., Bretscher P.A. Mycobacterial dose defines the Th1/Th2 nature of the immune response independently of whether immunization is administered by intravenous, subcutaneous, or intradermal route. Infect. Immun., 1998, vol. 66, pp. 5743-5750.
38. Rehm K.E., Xiang L., Elci O.U. et al. Variability in laboratory immune parameters is associated with stress hormone receptor polymorphisms. Neuroimmunomodulation, 2012, vol. 19, no. 4, pp. 220-228.
39. Salem S., Gros P. Genetic determinants of susceptibility to mycobacterial infections: IRF8, a new kid on the block. Adv. Exp. Med. Biol., 2013, vol. 783, pp. 45-80.
40. Sander B., Skansen-Saphir U., Damm O. et al. Sequential production of Th1 and Th2 cytokines in response to live bacillus Calmette-Guerin. Immunology, 1995, vol. 86, pp. 512-518.
41. Setoguchi K., Takeya M., Akaike T. et al. Expression of inducible nitric oxide synthase and its involvement in pulmonary granulomatous inflammation in rats. Am. J. Pathol., 1996, vol. 149, pp. 2005-2022.
42. van Krevel R., Karyadi E., Preyers F. et al. Increased production of interleukin 4 by CD4 and CD8 T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J. Infect. Dis., 2000, vol. 181, pp. 1194-1197.
43. Vane J.R., Michell J.A., Appleton I. et al. Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc. Natl. Acad. Sci USA, 1994, vol. 91, pp. 2046-2050.
44. Wang Q., Zhan P., Qiu L.X. et al. TNF-308 gene polymorphism and tuberculosis susceptibility: a meta-analysis involving 18 studies. Mol. Biol. Rep., 2012, vol. 39, pp. 3393-3400.
45. Zhang Y., De S., Garner J.R. et al. Systematic analysis, comparison, and integ ration of disease based human genetic association data and mouse genetic phenotypic information. BMC Medical Genomics, 2010, 3:1-22 http://www.biomedcentral.com/1755-8794/3/1
46. http://www.hugenavigator.net
47. http://www.kegg.jp/dbget-bin/www_bget?hsa:2784
Review
For citations:
Babushkina N.P., Buykin S.V., Bragina E.Yu., Tarasenko N.V., Rudko A.A., Kucher A.N. ANALYSIS OF ASSOCIATIONS OF POLYMORPHOUS VARIANTS OF GENES-CANDIDATES OF MULTI-FACTORIAL DISEASES WITH PULMONARY TUBERCULOSIS. Tuberculosis and Lung Diseases. 2015;(10):10-19. (In Russ.)