Аутофагия в патогенезе туберкулеза

Полный текст:


Аннотация

Аутофагия - важный иммунный механизм, определяющий устойчивость организма к внутриклеточным патогенам и, в частности, к микобактерии туберкулеза. При этом аутофагия участвует в непосредственной элиминации патогена, контроле иммунных реакций организма и поддержании внутриклеточного гомеостаза, что важно для персистенции микобактерий. Ингибирование аутофагии на ранних этапах инфицирования вирулентными штаммами микобактерий является одной из причин несостоятельности иммунного ответа, и механизмы, лежащие в основе этого процесса, рассматриваются как перспективная область для поиска патогенетически ориентированных подходов профилактики и терапии туберкулеза.

Об авторах

А. В. Чечушков
ФГБНУ «НИИ экспериментальной и клинической медицины»
Россия

научный сотрудник,

630117 г. Новосибирск, ул. Тимакова, д. 2



Н. К. Зенков
ФГБНУ «НИИ экспериментальной и клинической медицины»
Россия


П. М. Кожин
ФГБНУ «НИИ экспериментальной и клинической медицины»
Россия


Т. А. Колпакова
Новосибирский НИИ туберкулеза МЗ РФ; ГБОУ ВПО «Новосибирский государственный медицинский университет» МЗ РФ
Россия


Е. Б. Меньщикова
ФГБНУ «НИИ экспериментальной и клинической медицины»
Россия


Список литературы

1. Васильева И. А., Самойлова Г. А., Зимина В. Н. и др. Лечение туберкулеза: Опыт прошлого, современное состояние и перспективы // Туб. - 2013. - № 5. - С. 31-38.

2. Потапнев М. П. Аутофагия, апоптоз, некроз клеток и иммунное распознавание своего и чужого // Иммунология. - 2014. - № 2. - С. 95-102.

3. Пупышев А. Б. Репаративная аутофагия и аутофаговая гибель клетки. Функциональные и регуляторные аспекты // Цитология. - 2014. - № 3. - С. 179-196.

4. American Lung Association. State of Lung Disease in Diverse Communities, 2010.- Tuberculosis. - P. 101-104. (точка доступа http://www.lung.org/ assets/documents/publications/solddc-chapters/tb.pdf)

5. Banerjee D., Bhattacharyya R. Statin therapy may prevent development of tuberculosis in diabetic state // Med. Hypotheses. - 2014. - Vol. 83. - P. 88-91.

6. Brozzi A., Urbanelli L., Germain P. L. et al. hLGDB: a database of human lysosomal genes and their regulation // Database (Oxford). - 2013. - Vol. 2013. - bat024, PMC3625959.

7. Buffen K., Oosting M., Quintin J. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer // PLoS Pathog. - 2014. - Vol. 10. - ID e1004485, doi 10.1371/journal.ppat.1004485.

8. Burman C., Ktistakis N. T. Regulation of autophagy by phosphatidylinositol 3-phosphate // FEBS Lett. - 2010. - Vol. 584. - P. 1302-1312.

9. Byles V., Covarrubias A. J., Ben-Sahra I. et al. The TSC-mTOR pathway regulates macrophage polarization // Nat. Commun. - 2013. - Vol. 4. - ID 2834. doi 10.1038/ncomms3834.

10. Caire-Brandli I., Papadopoulos A., Malaga W. et al. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis // Infect. Immun. - 2014. - Vol. 82. - P. 476-490.

11. Campbell G. R., Spector S. A. Inhibition of human immunodeficiency virus type-1 through autophagy // Curr. Opin. Microbiol. - 2013. - Vol. 16. - P. 349-354.

12. Campbell G. R., Spector S. A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy // PLoS Pathog. - 2012. - Vol. 8. - ID e1002689. doi 10.1371/journal.ppat.1002689.

13. Carchman E. H., Rao J., Loughran P. A. et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice // Hepatology. - 2011. - Vol. 53. - P. 2053-2062.

14. Carlsson F., Kim J., Dumitru C. et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection // PLoS Pathog. - 2010. - Vol. 6. - ID e1000895, doi 10.1371/journal.ppat.1000895.

15. Carlsson S.R., Simonsen A. Membrane dynamics in autophagosome biogenesis // J. Cell Sci. - 2015. - Vol. 128. - P. 193-205.

16. Castillo E. F., Dekonenko A., Arko-Mensah J. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation // Proc. Natl. Acad. Sci. U. S. A. - 2012. - Vol. 109. - P. E3168-E3176.

17. Chang C. P., Su Y. C., Hu C. W., Lei H. Y. TLR2-dependent selective autophagy regulates NF-κB lysosomal degradation in hepatoma-derived M2 macrophage differentiation // Cell Death Differ. - 2013. - Vol. 20. - P. 515-523.

18. Daniel J., Sirakova T., Kolattukudy P. An Acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy // PLoS One. - 2014. - Vol. 9. - ID e114877, doi 10.1371/journal.pone.0114877.

19. de Jonge M. I., Pehau-Arnaudet G., Fretz M. M. et al. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity // J. Bacteriol. - 2007. - Vol. 189. - P. 6028-6034.

20. Deretic V. Autophagy in tuberculosis // Cold Spring Harb. Perspect. Med. - 2014. - Vol. 4. - ID a018481, doi 10.1101/cshperspect.a018481.

21. Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity // Nat. Rev. Immunol. - 2013. - Vol. 13. - P. 722-737.

22. Dkhar H. K., Nanduri R., Mahajan S. et al. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair // J. Immunol. - 2014. - Vol. 193. - P. 295-305.

23. Dutta R. K., Kathania M., Raje M., Majumdar S. IL-6 inhibits IFN-g induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages // Int. J. Biochem. Cell Biol. - 2012. - Vol. 44. - P. 942-954.

24. Emanuel R., Sergin I., Bhattacharya S. et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae // Arterioscler. Thromb. Vasc. Biol. - 2014. - Vol. 34. - P. 1942-1952.

25. Fabri M., Stenger S., Shin D. M. et al. Vitamin D is required for IFN-g-mediated antimicrobial activity of human macrophages // Sci. Transl. Med. - 2011. - Vol. 3. - ID 104ra102, 10.1126/scitranslmed.3003045.

26. Feeney E. J., Spampanato C., Puertollano R. et al. What else is in store for autophagy? Exocytosis of autolysosomes as a mechanism of TFEB-mediated cellular clearance in Pompe disease // Autophagy. - 2013. - Vol. 9. - P. 1117-1118.

27. Fijalkowska-Morawska J. B., Jagodzinska M., Nowicki M. Pulmonary embolism and reactivation of tuberculosis during everolimus therapy in a kidney transplant recipient // Ann. Transplant. - 2011. - Vol. 16. - P. 107-110.

28. Filimonenko M., Isakson P., Finley K. D. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy // Mol. Cell. - 2010. - Vol. 38. - P. 265-279.

29. Gao W. W., Wang Y., Zhang X. R. et al. Levels of 1,25(OH)2D3 for patients with pulmonary tuberculosis and correlations of 1,25(OH)2D3 with the clinical features of TB // J. Thorac. Dis. - 2014. - Vol. 6. - P. 760-764.

30. Gengenbacher M., Kaufmann S. H. Mycobacterium tuberculosis: success through dormancy // FEMS Microbiol. Rev. - 2012. - Vol. 36. - P. 514-532.

31. Goldberg E. L., Smithey M. J., Lutes L. K. et al. Immune memory-boosting dose of rapamycin impairs macrophage vesicle acidification and curtails glycolysis in effector CD8 cells, impairing defense against acute infections // J. Immunol. - 2014. - Vol. 193. - P. 757-763.

32. Greenstein R. J., Su L., Shahidi A. et al. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications // Int. J. Infect. Dis. - 2014. - Vol. 26. - P. 37-43.

33. Gregoire I. P., Richetta C., Meyniel-Schicklin L. et al. IRGM is a common target of RNA viruses that subvert the autophagy network // PLoS Pathog. - 2011. - Vol. 7. - ID e1002422, doi 10.1371/journal.ppat.1002422.

34. Guo X. G., Ji T. X., Xia Y., Ma Y. Y. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection // Biochem. Biophys. Res. Commun. - 2013. - Vol. 432. - P. 308-313.

35. Gutierrez M. G., Master S. S., Singh S. B. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages // Cell. - 2004. - Vol. 119. - P. 753-766.

36. Harries A. D., Zachariah R., Corbett E. L. et al. The HIV-associated tuberculosis epidemic - when will we act? // Lancet. - 2010. - Vol. 375. - P. 1906-1919.

37. Harris J., de Haro S. A., Master S. S. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis // Immunity. - 2007. - Vol. 27. - P. 505-517.

38. Harris J., Master S. S., De Haro S. A. et al. Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages // Vet. Immunol. Immunopathol. - 2009. - Vol. 128. - P. 37-43. Harris S.S. Vitamin D and African Americans // J. Nutr. - 2006. - Vol. 136. - P. 1126-1129.

39. Houben D., Demangel C., van Ingen J. et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria // Cell. Microbiol. - 2012. - Vol. 14. - P. 1287-1298.

40. Jagannath C., Bakhru P. Rapamycin-induced enhancement of vaccine efficacy in mice // Methods Mol. Biol. - 2012. - Vol. 821. - P. 295-303.

41. Jagannath C., Lindsey D. R., Dhandayuthapani S. et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells // Nat. Med. - 2009. - Vol. 15. - P. 267-276.

42. Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins // Autophagy. - 2011. - Vol. 7. - P. 279-296.

43. Jostins L., Ripke S., Weersma R. K. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease // Nature. - 2012. - Vol. 491. - P. 119-124.

44. Juarez E., Carranza C., Hernandez-Sanchez F. et al. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans // Eur. J. Immunol. - 2012. - Vol. 42. - P. 880-889.

45. Juarez E., Carranza C., Hernandez-Sanchez F. et al. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages // BMC Pulm. Med. - 2014. - Vol. 14. - ID 152, doi 10.1186/1471-2466-14-152.

46. Junkins R. D., McCormick C., Lin T. J. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections // Autophagy. - 2014. - Vol. 10. - P. 538-547.

47. Kang Y. A., Choi N. K., Seong J. M. et al. The effects of statin use on the development of tuberculosis among patients with diabetes mellitus // Int. J. Tuberc. Lung Dis. - 2014. - Vol. 18. - P. 717-724.

48. Khader S. A., Gopal R. IL-17 in protective immunity to intracellular pathogens // Virulence. - 2010. - Vol. 1. - P. 423-427.

49. Kimura T., Watanabe E., Sakamoto T. et al. Autophagy-related IRGM polymorphism is associated with mortality of patients with severe sepsis // PLoS One. - 2014. - Vol. 9. - ID e91522, doi 10.1371/journal.pone.0091522.

50. Lam K. K., Zheng X., Forestieri R. et al. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis // PLoS Pathog. - 2012. - Vol. 8. - ID e1002691, doi 10.1371/journal.ppat.1002691.

51. Levine B., Packer M., Codogno P. Development of autophagy inducers in clinical medicine // J. Clin. Invest. - 2015. - Vol. 125. - P. 14-24.

52. Lin C. C., Wang J. Y., Pu Y. S. Active tuberculosis during temsirolimus and bevacizumab treatment // J. Clin. Oncol. - 2013. - Vol. 31. - P. e18-e20.

53. Liu P. T., Schenk M., Walker V. P. et al. Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses // PLoS One. - 2009. - Vol. 4. - ID e5810, doi 10.1371/journal.pone.0005810.

54. Liu P. T., Stenger S., Li H. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response // Science. - 2006. - Vol. 311. - P. 1770-1773.

55. Mahajan S., Dkhar H. K., Chandra V. et al. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARg and TR4 for survival // J. Immunol. - 2012. - Vol. 188. - P. 5593-5603.

56. Manzanillo P. S., Shiloh M. U., Portnoy D. A., Cox J. S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages // Cell. Host. Microbe. - 2012. - Vol. 11. - P. 469-480.

57. Martinet W., de Loof H., de Meyer G. R. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques // Atherosclerosis. - 2014. - Vol. 233. - P. 601-607.

58. McNab F. W., Ewbank J., Howes A. et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages // J. Immunol. - 2014. - Vol. 193. - P. 3600-3612.

59. Meijer A. H., van der Vaart M. DRAM1 promotes the targeting of mycobacteria to selective autophagy // Autophagy. - 2014. - Vol. 10. - P. 2389-2391.

60. Mi S., Li Z., Yang H. Z. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and -independent mechanisms // J. Immunol. - 2011. - Vol. 187. - P. 3003-3014.

61. Mintern J. D., Macri C., Villadangos J. A. Modulation of antigen presentation by intracellular trafficking // Curr. Opin. Immunol. - 2015. - Vol. 34C. - P. 16-21.

62. Mishra R., Shukla P., Huang W., Hu N. Gene mutations in Mycobacterium tuberculosis: Multidrug-resistant TB as an emerging global public health crisis // Tuberculosis (Edinb.). - 2015. - Vol. 95. - P. 1-5.

63. Moraco A. H., Kornfeld H. Cell death and autophagy in tuberculosis // Semin. Immunol. - 2014. - Vol. 26. - P. 497-511.

64. Mostowy S., Sancho-Shimizu V., Hamon M. A. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways // J. Biol. Chem. - 2011. - Vol. 286. - P. 26987-26995.

65. Muraille E., Leo O., Moser M. Th1/Th2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? // Front. Immunol. - 2014. - Vol. 5. - ID 603, doi 10.3389/fimmu.2014.00603.

66. Nakahira K., Haspel J. A., Rathinam V. A. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome // Nat. Immunol. - 2011. - Vol. 12. - P. 222-230.

67. Nandi B., Behar S. M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection // J. Exp. Med. - 2011. - Vol. 208. - P. 2251-2262.

68. Netea M. G., Quintin J., van der Meer J. W. Trained immunity: a memory for innate host defense // Cell Host Microbe. - 2011. - Vol. 9. - P. 355-361.

69. Ohol Y. M., Goetz D. H., Chan K. et al. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence // Cell Host Microbe. - 2010. - Vol. 7. - P. 210-220.

70. Parihar S. P., Guler R., Khutlang R. et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation // J. Infect. Dis. - 2014. - Vol. 209. - P. 754-763.

71. Ponpuak M., Davis A. S., Roberts E. A. et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties // Immunity. - 2010. - Vol. 32. - P. 329-341.

72. Reggiori F., Komatsu M., Finley K., Simonsen A. Autophagy: more than a nonselective pathway // Int. J. Cell Biol. - 2012. - Vol. 2012. - ID 219625, doi 10.1155/2012/219625.

73. Rodriguez J. G., Hernandez A. C., Helguera-Repetto C. et al. Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis // MBio. - 2014. - Vol. 5. - P. e01125-e01114.

74. Romagnoli A., Etna M. P., Giacomini E. et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells // Autophagy. - 2012. - Vol. 8. - P. 1357-1370.

75. Rovetta A. I., Pena D., Hernandez Del Pino R. E. et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis // Autophagy. - 2014. - Vol. 10. - P. 2109-2121.

76. Russell D. G., Cardona P. J., Kim M. J. et al. Foamy macrophages and the progression of the human tuberculosis granuloma // Nat. Immunol. - 2009. - Vol. 10. - P. 943-948.

77. Saitoh T., Fujita N., Hayashi T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response // Proc. Natl. Acad. Sci. U. S. A. - 2009. - Vol. 106. - P. 20842-20846.

78. Sanchez-Wandelmer J., Ktistakis N. T., Reggiori F. ERES: sites for autophagosome biogenesis and maturation? // J. Cell Sci. - 2015. - Vol. 128. - P. 185-192.

79. Schiebler M., Brown K., Hegyi K. et al. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion // EMBO Mol. Med. - 2014. - Vol. 7. - P. 127-139.

80. Seto S., Tsujimura K., Horii T., Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells // PLoS One. - 2013. - Vol. 8. - ID e86017, doi 10.1371/journal.pone.0086017.

81. Shaid S., Brandts C. H., Serve H., Dikic I. Ubiquitination and selective autophagy // Cell Death Differ. - 2013. - Vol. 20. - P. 21-30.

82. Sharma G., Dutta R. K., Khan M. A. et al. IL-27 inhibits IFN-γ induced autophagy by concomitant induction of JAK/PI3 K/Akt/mTOR cascade and up-regulation of Mcl-1 in Mycobacterium tuberculosis H37Rv infected macrophages // Int. J. Biochem. Cell Biol. - 2014. - Vol. 55. - P. 335-347.

83. Shin D. M., Yuk J. M., Lee H. M. et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling // Cell. Microbiol. - 2010. - Vol. 12. - P. 1648-1665.

84. Shui W., Petzold C. J., Redding A. et al. Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation // J. Proteome Res. - 2011. - Vol. 10. - P. 339-348.

85. Singh R., Kaushik S., Wang Y. et al. Autophagy regulates lipid metabolism // Nature. - 2009. - Vol. 458. - P. 1131-1135.

86. Singh S. B., Davis A. S., Taylor G. A., Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria // Science. - 2006. - Vol. 313. - P. 1438-1441.

87. Singh V., Jamwal S., Jain R. et al. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype // Cell Host Microbe. - 2012. - Vol. 12. - P. 669-681.

88. Singhal A., Jie L., Kumar P. et al. Metformin as adjunct antituberculosis therapy // Sci. Transl. Med. - 2014. - Vol. 6. - ID 263ra159, doi 10.1126/scitranslmed.3009885.

89. Skerry C., Pinn M. L., Bruiners N. et al. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen // J. Antimicrob. Chemother. - 2014. - Vol. 69. - P. 2453-2457.

90. Songane M., Kleinnijenhuis J., Alisjahbana B. et al. Polymorphisms in autophagy genes and susceptibility to tuberculosis // PLoS One. - 2012. - Vol. 7. - ID e41618, doi 10.1371/journal.pone.0041618.

91. Starokadomskyy P., Dmytruk K. V. A bird’s-eye view of autophagy // Autophagy. - 2013. - Vol. 9. - P. 1121-1126.

92. Stoycheva D., Deiser K., Starck L. et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals // J. Immunol. - 2015. - Vol. 194. - P. 553-559. Sulkowska K., Palczewski P., Miszewska-Szyszkowska D. et al. Early everolimus-induced pneumonitis in a renal transplant recipient: A case report // Ann. Transplant. - 2012. - Vol. 17. - P. 144-148.

93. Teles R. M., Graeber T. G., Krutzik S. R. et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses // Science. - 2013. - Vol. 339. - P. 1448-1453.

94. Velikkakath A. K., Nishimura T., Oita E. et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets // Mol. Biol. Cell. - 2012. - Vol. 23. - P. 896-909.

95. Vergne I., Chua J., Singh S. B., Deretic V. Cell biology of Mycobacterium tuberculosis phagosome // Annu. Rev. Cell Dev. Biol. - 2004. - Vol. 20. - P. 367-394.

96. Wang X., Li L., Niu X. et al. mTOR enhances foam cell formation by suppressing the autophagy pathway // DNA Cell Biol. - 2014. - Vol. 33. - P. 198-204.

97. Xu G., Wang J., Gao G. F., Liu C. H. Insights into battles between Mycobacterium tuberculosis and macrophages // Protein Cell. - 2014. - Vol. 5. - P. 728-736.

98. Yang C. S., Kim J. J., Lee H. M. et al. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy // Autophagy. - 2014. - Vol. 10. - P. 785-802.

99. Yuk J. M., Jo E. K. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis // Clin. Exp. Vaccine Res. - 2014. - Vol. 3. - P. 155-167.

100. Yuk J. M., Shin D. M., Lee H. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin // Cell Host Microbe. - 2009. - Vol. 6. - P. 231-243.

101. Zhang L., Zhang H., Zhao Y. et al. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages // DNA Cell Biol. - 2012. - Vol. 31. - P. 171-179.

102. Zullo A. J., Jurcic Smith K. L., Lee S. Mammalian target of Rapamycin inhibition and mycobacterial survival are uncoupled in murine macrophages // BMC Biochem. - 2014. - Vol. 15. - ID 4, doi 10.1186/1471-2091-15-4.


Дополнительные файлы

Для цитирования: Чечушков А.В., Зенков Н.К., Кожин П.М., Колпакова Т.А., Меньщикова Е.Б. Аутофагия в патогенезе туберкулеза. Туберкулез и болезни легких. 2016;94(3):8-19.

For citation: Chechushkov A.V., Zenkov N.K., Kozhin P.M., Kolpakova T.A., Men'schikova E.B. AUTOPHAGY IN THE PATHOGENESIS OF TUBERCULOSIS. Tuberculosis and Lung Diseases. 2016;94(3):8-19. (In Russ.)

Просмотров: 382

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)