AUTOPHAGY IN THE PATHOGENESIS OF TUBERCULOSIS
Abstract
About the Authors
A. V. ChechushkovRussian Federation
Novosibirsk
N. K. Zenkov
Russian Federation
Novosibirsk
P. M. Kozhin
Russian Federation
Novosibirsk
T. A. Kolpakova
Russian Federation
Novosibirsk
E. B. Men'schikova
Russian Federation
Novosibirsk
References
1. Vasilieva I.А., Samoylova G.А., Zimina V.N. et al. Treatment of tuberculosis: past experience, current state and prospectives. Tub., 2013, no. 5, pp. 31-38. (In Russ.)
2. Potapnev M.P. Autophagy, apoptosis, necrosis of cells and immune recognition of the self and non self. Immunologiya, 2014, no. 2, pp. 95-102. (In Russ.)
3. Pupyshev A.B. Reparative autophagy and autophagic cell death. Functional and regulatory aspects. Tsitologiya, 2014, no. 3, pp. 179-196. (In Russ.)
4. American Lung Association. State of Lung Disease in Diverse Communities, 2010.– Tuberculosis. pp. 101-104. (Available at: http://www.lung.org/assets/documents/publications/solddc-chapters/tb.pdf)
5. Banerjee D., Bhattacharyya R. Statin therapy may prevent development of tuberculosis in diabetic state. Med. Hypotheses, 2014, vol. 83, pp. 88-91.
6. Brozzi A., Urbanelli L., Germain P.L. et al. hLGDB: a database of human lysosomal genes and their regulation. Database (Oxford). 2013, vol. 2013, bat024, PMC3625959.
7. Buffen K., Oosting M., Quintin J. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog., 2014, vol. 10, ID e1004485, doi 10.1371/journal.ppat.1004485.
8. Burman C., Ktistakis N.T. Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett., 2010, vol. 584, pp. 1302-1312.
9. Byles V., Covarrubias A.J., Ben-Sahra I. et al. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun., 2013, vol. 4, ID 2834. doi 10.1038/ncomms3834.
10. Caire-Brandli I., Papadopoulos A., Malaga W. et al. Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis. Infect. Immun., 2014, vol. 82, pp. 476-490.
11. Campbell G.R., Spector S.A. Inhibition of human immunodeficiency virus type-1 through autophagy. Curr. Opin. Microbiol., 2013, vol. 16, pp. 349-354.
12. Campbell G.R., Spector S.A. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog., 2012, vol. 8, ID e1002689. doi 10.1371/journal.ppat.1002689.
13. Carchman E.H., Rao J., Loughran P.A. et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology, 2011, vol. 53, pp. 2053-2062.
14. Carlsson F., Kim J., Dumitru C. et al. Host-detrimental role of Esx-1-mediated inflammasome activation in mycobacterial infection. PLoS Pathog., 2010, vol. 6, ID e1000895, doi 10.1371/journal.ppat.1000895.
15. Carlsson S.R., Simonsen A. Membrane dynamics in autophagosome biogenesis. J. Cell Sci., 2015, vol. 128, pp. 193-205.
16. Castillo E.F., Dekonenko A., Arko-Mensah J. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. E3168-E3176.
17. Chang C.P., Su Y.C., Hu C.W., Lei H.Y. TLR2-dependent selective autophagy regulates NF-κB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death Differ., 2013, vol. 20, pp. 515-523.
18. Daniel J., Sirakova T., Kolattukudy P. An Acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy. PLoS One, 2014, vol. 9, ID e114877, doi 10.1371/journal.pone.0114877.
19. de Jonge M.I., Pehau-Arnaudet G., Fretz M.M. et al. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J. Bacteriol., 2007, vol. 189, pp. 6028-6034.
20. Deretic V. Autophagy in tuberculosis. Cold Spring Harb. Perspect. Med., 2014, vol. 4, ID a018481, doi 10.1101/cshperspect.a018481.
21. Deretic V., Saitoh T., Akira S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol., 2013, vol. 13, pp. 722-737.
22. Dkhar H.K., Nanduri R., Mahajan S. et al. Mycobacterium tuberculosis keto-mycolic acid and macrophage nuclear receptor TR4 modulate foamy biogenesis in granulomas: a case of a heterologous and noncanonical ligand-receptor pair. J. Immunol., 2014, vol. 193, pp. 295-305.
23. Dutta R.K., Kathania M., Raje M., Majumdar S. IL-6 inhibits IFN-g induced autophagy in Mycobacterium tuberculosis H37Rv infected macrophages. Int. J. Biochem. Cell Biol., 2012, vol. 44, pp. 942-954.
24. Emanuel R., Sergin I., Bhattacharya S. et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol., 2014, vol. 34, pp. 1942-1952.
25. Fabri M., Stenger S., Shin D.M. et al. Vitamin D is required for IFN-g-mediated antimicrobial activity of human macrophages. Sci. Transl. Med. 2011, vol. 3, ID 104ra102, 10.1126/scitranslmed.3003045.
26. Feeney E.J., Spampanato C., Puertollano R. et al. What else is in store for autophagy? Exocytosis of autolysosomes as a mechanism of TFEB-mediated cellular clearance in Pompe disease. Autophagy, 2013, vol. 9, pp. 1117-1118.
27. Fijalkowska-Morawska J.B., Jagodzinska M., Nowicki M. Pulmonary embolism and reactivation of tuberculosis during everolimus therapy in a kidney transplant recipient. Ann. Transplant., 2011, vol. 16, pp. 107-110.
28. Filimonenko M., Isakson P., Finley K.D. et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell. 2010, vol. 38, pp. 265-279.
29. Gao W.W., Wang Y., Zhang X.R. et al. Levels of 1,25(OH)2D3 for patients with pulmonary tuberculosis and correlations of 1,25(OH)2D3 with the clinical features of TB. J. Thorac. Dis., 2014, vol. 6, pp. 760-764.
30. Gengenbacher M., Kaufmann S.H. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev., 2012, vol. 36, pp. 514-532.
31. Goldberg E.L., Smithey M.J., Lutes L.K. et al. Immune memory-boosting dose of rapamycin impairs macrophage vesicle acidification and curtails glycolysis in effector CD8 cells, impairing defense against acute infections. J. Immunol., 2014, vol. 193, pp. 757-763.
32. Greenstein R.J., Su L., Shahidi A. et al. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications. Int. J. Infect. Dis., 2014, vol. 26, pp. 37-43.
33. Gregoire I.P., Richetta C., Meyniel-Schicklin L. et al. IRGM is a common target of RNA viruses that subvert the autophagy network. PLoS Pathog., 2011, vol. 7, ID e1002422, doi 10.1371/journal.ppat.1002422.
34. Guo X.G., Ji T.X., Xia Y., Ma Y.Y. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection. Biochem.Biophys.Res.Commun., 2013, vol. 432, pp. 308-313.
35. Gutierrez M.G., Master S.S., Singh S.B. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell., 2004, vol. 119, pp. 753-766.
36. Harries A.D., Zachariah R., Corbett E.L. et al. The HIV-associated tuberculosis epidemic – when will we act?. Lancet, 2010, vol. 375, pp. 1906-1919.
37. Harris J., de Haro S.A., Master S.S. et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity, 2007, vol. 27, pp. 505-517.
38. Harris J., Master S.S., De Haro S.A. et al. Th1-Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Vet. Immunol. Immunopathol., 2009, vol. 128, pp. 37-43.
39. Harris S.S. Vitamin D and African Americans. J. Nutr., 2006, vol. 136, pp. 1126-1129.
40. Houben D., Demangel C., van Ingen J. et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell. Microbiol., 2012, vol. 14, pp. 1287-1298.
41. Jagannath C., Bakhru P. Rapamycin-induced enhancement of vaccine efficacy in mice. Methods Mol. Biol., 2012, vol. 821, pp. 295-303.
42. Jagannath C., Lindsey D.R., Dhandayuthapani S. et al. Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat. Med., 2009, vol. 15, pp. 267-276.
43. Johansen T., Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy, 2011, vol. 7, pp. 279-296.
44. Jostins L., Ripke S., Weersma R.K. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, vol. 491, pp. 119-124.
45. Juarez E., Carranza C., Hernandez-Sanchez F. et al. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans. Eur. J. Immunol., 2012, vol. 42, pp. 880-889.
46. Juarez E., Carranza C., Hernandez-Sanchez F. et al. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages. BMC Pulm. Med., 2014, vol. 14, ID 152, doi 10.1186/1471-2466-14-152.
47. Junkins R.D., McCormick C., Lin T.J. The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections. Autophagy, 2014, vol. 10, pp. 538-547.
48. Kang Y.A., Choi N.K., Seong J.M. et al. The effects of statin use on the development of tuberculosis among patients with diabetes mellitus. Int. J. Tuberc. Lung Dis., 2014, vol. 18, pp. 717-724.
49. Khader S.A., Gopal R. IL-17 in protective immunity to intracellular pathogens. Virulence, 2010, vol. 1, pp. 423-427.
50. Kimura T., Watanabe E., Sakamoto T. et al. Autophagy-related IRGM polymorphism is associated with mortality of patients with severe sepsis. PLoS One, 2014, vol. 9, ID e91522, doi 10.1371/journal.pone.0091522.
51. Lam K.K., Zheng X., Forestieri R. et al. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis. PLoS Pathog., 2012, vol. 8, ID e1002691, doi 10.1371/journal.ppat.1002691.
52. Levine B., Packer M., Codogno P. Development of autophagy inducers in clinical medicine. J. Clin. Invest., 2015, vol. 125, pp. 14-24.
53. Lin C.C., Wang J.Y., Pu Y.S. Active tuberculosis during temsirolimus and bevacizumab treatment. J. Clin. Oncol., 2013, vol. 31, pp. e18-e20.
54. Liu P.T., Schenk M., Walker V.P. et al. Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One, 2009, vol. 4, ID e5810, doi 10.1371/journal.pone.0005810.
55. Liu P.T., Stenger S., Li H. et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006, vol. 311, pp. 1770-1773.
56. Mahajan S., Dkhar H.K., Chandra V. et al. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptors PPARg and TR4 for survival. J. Immunol., 2012, vol. 188, pp. 5593-5603.
57. Manzanillo P.S., Shiloh M.U., Portnoy D.A., Cox J.S. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell. Host. Microbe, 2012, vol. 11, pp. 469-480.
58. Martinet W., de Loof H., de Meyer G.R. mTOR inhibition: a promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis, 2014, vol. 233, pp. 601-607.
59. McNab F.W., Ewbank J., Howes A. et al. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J. Immunol., 2014, vol. 193, pp. 3600-3612.
60. Meijer A.H., van der Vaart M. DRAM1 promotes the targeting of mycobacteria to selective autophagy. Autophagy, 2014, vol. 10, pp. 2389-2391.
61. Mi S., Li Z., Yang H.Z. et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-β1-dependent and –independent mechanisms. J. Immunol., 2011, vol. 187, pp. 3003-3014.
62. Mintern J.D., Macri C., Villadangos J.A. Modulation of antigen presentation by intracellular trafficking. Curr. Opin. Immunol., 2015, vol. 34C, pp. 16-21.
63. Mishra R., Shukla P., Huang W., Hu N. Gene mutations in Mycobacterium tuberculosis: Multidrug-resistant TB as an emerging global public health crisis. Tuberculosis (Edinb.), 2015, vol. 95, pp. 1-5.
64. Moraco A.H., Kornfeld H. Cell death and autophagy in tuberculosis. Semin. Immunol., 2014, vol. 26, pp. 497-511.
65. Mostowy S., Sancho-Shimizu V., Hamon M.A. et al. p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J. Biol. Chem., 2011, vol. 286, pp. 26987-26995.
66. Muraille E., Leo O., Moser M. Th1/Th2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front. Immunol., 2014, vol. 5, ID 603, doi 10.3389/fimmu.2014.00603.
67. Nakahira K., Haspel J.A., Rathinam V.A. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, vol. 12, pp. 222-230.
68. Nandi B., Behar S.M. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J. Exp. Med., 2011, vol. 208, pp. 2251-2262.
69. Netea M.G., Quintin J., van der Meer J.W. Trained immunity: a memory for innate host defense. Cell Host Microbe, 2011, vol. 9, pp. 355-361.
70. Ohol Y.M., Goetz D.H., Chan K. et al. Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe, 2010, vol. 7, pp. 210-220.
71. Parihar S.P., Guler R., Khutlang R. et al. Statin therapy reduces the Mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J. Infect. Dis., 2014, vol. 209, pp. 754-763.
72. Ponpuak M., Davis A.S., Roberts E.A. et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity, 2010, vol. 32, pp. 329-341.
73. Reggiori F., Komatsu M., Finley K., Simonsen A. Autophagy: more than a nonselective pathway. Int. J. Cell Biol., 2012, vol. 2012, ID 219625, doi 10.1155/2012/219625.
74. Rodriguez J.G., Hernandez A.C., Helguera-Repetto C. et al. Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis. MBio., 2014, vol. 5, pp. e01125-e01114.
75. Romagnoli A., Etna M.P., Giacomini E. et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. Autophagy, 2012, vol. 8, pp. 1357-1370.
76. Rovetta A.I., Pena D., Hernandez Del Pino R.E. et al. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy, 2014, vol. 10, pp. 2109-2121.
77. Russell D.G., Cardona P.J., Kim M.J. et al. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol., 2009, vol. 10, pp. 943-948.
78. Saitoh T., Fujita N., Hayashi T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 20842-20846.
79. Sanchez-Wandelmer J., Ktistakis N.T., Reggiori F. ERES: sites for autophagosome biogenesis and maturation? J. Cell Sci., 2015, vol. 128, pp. 185-192.
80. Schiebler M., Brown K., Hegyi K. et al. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol. Med., 2014, vol. 7, pp. 127-139.
81. Seto S., Tsujimura K., Horii T., Koide Y. Autophagy adaptor protein p62/SQSTM1 and autophagy-related gene Atg5 mediate autophagosome formation in response to Mycobacterium tuberculosis infection in dendritic cells. PLoS One, 2013, vol. 8, ID e86017, doi 10.1371/journal.pone.0086017.
82. Shaid S., Brandts C.H., Serve H., Dikic I. Ubiquitination and selective autophagy. Cell Death Differ., 2013, vol. 20, pp. 21-30.
83. Sharma G., Dutta R.K., Khan M.A. et al. IL-27 inhibits IFN-γ induced autophagy by concomitant induction of JAK/PI3 K/Akt/mTOR cascade and up-regulation of Mcl-1 in Mycobacterium tuberculosis H37Rv infected macrophages. Int. J. Biochem. Cell Biol., 2014, vol. 55, pp. 335-347.
84. Shin D.M., Yuk J.M., Lee H.M. et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell. Microbiol., 2010, vol. 12, pp. 1648-1665.
85. Shui W., Petzold C.J., Redding A. et al. Organelle membrane proteomics reveals differential influence of mycobacterial lipoglycans on macrophage phagosome maturation and autophagosome accumulation. J. Proteome Res., 2011, vol. 10, pp. 339-348.
86. Singh R., Kaushik S., Wang Y. et al. Autophagy regulates lipid metabolism. Nature, 2009, vol. 458, pp. 1131-1135.
87. Singh S.B., Davis A.S., Taylor G.A., Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science, 2006, vol. 313, pp. 1438-1441.
88. Singh V., Jamwal S., Jain R. et al. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host Microbe, 2012, vol. 12, pp. 669-681.
89. Singhal A., Jie L., Kumar P. et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med., 2014, vol. 6, ID 263ra159, doi 10.1126/scitranslmed.3009885.
90. Skerry C., Pinn M.L., Bruiners N. et al. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J. Antimicrob. Chemother., 2014, vol. 69, pp. 2453-2457.
91. Songane M., Kleinnijenhuis J., Alisjahbana B. et al. Polymorphisms in autophagy genes and susceptibility to tuberculosis. PLoS One, 2012, vol. 7, ID e41618, doi 10.1371/journal.pone.0041618.
92. Starokadomskyy P., Dmytruk K.V. A bird’s-eye view of autophagy. Autophagy, 2013, vol. 9, pp. 1121-1126.
93. Stoycheva D., Deiser K., Starck L. et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J. Immunol., 2015, vol. 194, pp. 553-559.
94. Sulkowska K., Palczewski P., Miszewska-Szyszkowska D. et al. Early everolimus-induced pneumonitis in a renal transplant recipient: A case report. Ann. Transplant., 2012, vol. 17, pp. 144-148.
95. Teles R.M., Graeber T.G., Krutzik S.R. et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science, 2013, vol. 339, pp. 1448-1453.
96. Velikkakath A.K., Nishimura T., Oita E. et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell., 2012, vol. 23, pp. 896-909.
97. Vergne I., Chua J., Singh S.B., Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 367-394.
98. Wang X., Li L., Niu X. et al. mTOR enhances foam cell formation by suppressing the autophagy pathway. DNA Cell Biol., 2014, vol. 33, pp. 198-204.
99. Xu G., Wang J., Gao G.F., Liu C.H. Insights into battles between Mycobacterium tuberculosis and macrophages. Protein Cell., 2014, vol. 5, pp. 728-736.
100. Yang C.S., Kim J.J., Lee H.M. et al. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy. Autophagy, 2014, vol. 10, pp. 785-802.
101. Yuk J.M., Jo E.K. Host immune responses to mycobacterial antigens and their implications for the development of a vaccine to control tuberculosis. Clin. Exp. Vaccine Res., 2014, vol. 3, pp. 155-167.
102. Yuk J.M., Shin D.M., Lee H.M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe, 2009, vol. 6, pp. 231-243.
103. Zhang L., Zhang H., Zhao Y. et al. Effects of Mycobacterium tuberculosis ESAT-6/CFP-10 fusion protein on the autophagy function of mouse macrophages. DNA Cell Biol., 2012, vol. 31, pp. 171-179.
104. Zullo A.J., Jurcic Smith K.L., Lee S. Mammalian target of Rapamycin inhibition and mycobacterial survival are uncoupled in murine macrophages. BMC Biochem., 2014, vol. 15, ID 4, doi 10.1186/1471-2091-15-4.
Review
For citations:
Chechushkov A.V., Zenkov N.K., Kozhin P.M., Kolpakova T.A., Men'schikova E.B. AUTOPHAGY IN THE PATHOGENESIS OF TUBERCULOSIS. Tuberculosis and Lung Diseases. 2016;94(3):8-19. (In Russ.)