Preview

Tuberculosis and Lung Diseases

Advanced search

IRON EXCHANGE IN MYCOBACTERIA

https://doi.org/10.21292/2075-1230-2016-94-7-6-10

Abstract

The review analyzes the major foreign publications on the iron exchange in mycobacteria for the recent years. The issues of iron absorption by tuberculous mycobacteria, its preservation and regulation of their metabolism have been reviewed. Deeper and more detail description of the above process will provide new opportunities for therapeutic interventions into it and assist in development of new tuberculosis treatment techniques.

About the Authors

V. L. Dobin
Razyan State Medical University
Russian Federation

Doctor of Medical Sciences, Professor, Head of Department of Phthisiopulmonology and X-ray Diagnostics,

15, Golenchenskoye Rd, Razyan, 390046



V. G. Demikhov
Razyan State Medical University
Russian Federation

Doctor of Medical Sciences, Professor, Director of Research Clinical Center of Children Hematology, Oncology, Immunology,

5V, Stroiteley St., Razyan, 390026



M. P. Zharikova
Razyan State Medical University
Russian Federation

Post-Graduate Student at Department of Phthisiopulmonology and X-ray Diagnostics,

15, Golenchenskoye Rd, Razyan, 390046



References

1. Andrews S.C., Robinson A.K., Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol. Rev., 2003, vol. 27, pp. 215-237.

2. Chiancone E., Ceci P., Ilari A. et al. Iron and proteins for iron storage and detoxification. Biometals, 2004, vol. 17, pp. 197-202.

3. Dobryszycka W. Biological functions of haptoglobin: new pieces to an old puzzle. Eur. J. Clin. Chem. Clin. Biochem., 1997, vol. 35, pp. 647-654.

4. Gobin J., Horwitz M.A. Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J. Exp. Med., 1996, vol. 183, pp. 1527-1532.

5. Gobin J., Moore C.H., Reeve J.R.Jr. et al. Iron acquisition by Mycobacterium tuberculosis: isolation and characterization of a family of iron-binding exochelins. Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5189-5193.

6. Gold B., Rodriguez G.M., Marras S.A. et al. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol., 2001, vol. 42, pp. 851-865.

7. Gupta V., Gupta R.K., Khare G. et al. Crystal structure of Bfr A from Mycobacterium tuberculosis: incorporation of selenomethionine results in cleavage and demetallation of haem. PLoS One, 2009, 4:e8028.

8. Hood M.I., Skaar E.P. Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol., 2012, vol. 10, pp. 525-537.

9. Jones C. M., Niederweis M. Mycobacterium tuberculosis can utilize heme as an iron source. J. Bacteriol., 2011, vol. 193, pp. 1767-1770.

10. Khaire G., Gupta V., Nangpal P. et al. Ferritin structure from Mycobacterium tuberculosis: comparative study with homologues identifies extended C-terminus involved in ferroxidase activity. PLoS One, 2011, 6:el8570.

11. Madigan C.A., Cheng T.Y., Layre E. et al. Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 1257-1262.

12. McMahon M.D., Rush J.S., Thomas M.G. Analyses of MbtB, MbtE, and MbtF suggest revisions to the mycobactin biosynthesis pathway in Mycobacterium tuberculosis. J. Bacteriol., 2012, vol. 194, pp. 2809-2818.

13. Nambu S., Matsui T., Goulding C.W. et al. A new way to degrade heme: the Mycobacterium tuberculosis enzyme MhuD catalyzes heme degradation without generating CO. J. Biol. Chem., 2013, vol. 5, pp. 10101-10109.

14. Pandey R., Rodriguez G.M. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect. Immun., 2012, vol. 80, pp. 3650-3659.

15. Pohl E., Holmes R.K., Hoi W.G. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. J. Mol. Biol., 1999, vol. 285, pp. 1145-1156.

16. Quadri L.E., Sello J., Keating Т.А. et al. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophoremycobactin. Chem. Biol., 1998, vol. 5, pp. 631-645.

17. Ratledge C. Iron, mycobacteria and tuberculosis. Tuberculosis, 2004, vol. 84, no. 1-2, pp. 110-130.

18. Reddy P.V., Puri R.V., Khera A. et  al. Iron storage proteins are  essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-l macrophages and the guinea pig model of infection. J. Bacteriol., 2012, vol. 194, pp. 567-575.

19. Rodrignez G.M., Neyrolles. Metallobiology of tuberculosis. Microb. Spectr., 2014, vol. 2, no. 3, pp. 1-11.

20. Rodriguez G.M., Gardner R., Kaur N. et al. Utilization of Fe3+-acinetoferrin analogs as an iron source by Mycobacterium tuberculosis. Biometals, 2008, vol. 21, pp. 93-103.

21. Rodriguez G.M., Smith I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol., 2006, vol. 188, pp. 424-430.

22. Rodriguez G.M., Voskuil M.I., Gold B. et al. An essential gene in Mycobacterium tuberculosis: role of IdeR in irofi-dependeint gene expression, iron metabolism, and oxidative stress response. Infect.Immun., 2002, vol. 70, pp. 3371-3381.

23. Ryndak M.B., Wang S., Smith I. et al. The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding d’omain. J. Bacteriol., 2010, vol. 192, pp. 861-869.

24. Schmitt M.P., Predich M., Doukhan L. et al. Characterization of an iron-dependent regulatory protein (IdeR) of My-cobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect. Immun., 1995, vol. 63, pp. 4284-4289.

25. Semavina M., Beckett D., Logan T.M. Metal-linked dimerization in the iron-dependent regulator from Mycobacterium tuberculosis. Biochemistry, 2006, vol. 45, pp. 12480-12490.

26. Serafini A., Boldrin F., Palu G. et al. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by-iron and zinc. J. Bacteriol., 2009, vol. 191, pp. 6340-6344.

27. Siegrist M.S., Unnikrishnan M., McConnell M.J. et al. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 18792-18797.

28. Snow G. A. Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol. Rev., 1970, vol. 34, pp. 99-125.

29. Takatsuka M., Osada-Oka M., Satoh E.F. et al. A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction. PLoS One, 2011, 6:e20985.

30. Tolosano E., Altruda F. Hemopexin: structure, function, and regulation. DNA Cell Biol., 2002, vol. 21, pp. 297-306.

31. Tullius M.V, Harmston C.A., Owens C.P. et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 5051-5056.

32. Weinberg E.D. Iron and susceptibility to infectious disease. Science, 1974, vol. 184, pp. 952-956.

33. Wells R.M., Jones C.M., Xi Z. et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathogens., 2013, 9:eI003120.


Review

For citations:


Dobin V.L., Demikhov V.G., Zharikova M.P. IRON EXCHANGE IN MYCOBACTERIA. Tuberculosis and Lung Diseases. 2016;94(7):6-10. (In Russ.) https://doi.org/10.21292/2075-1230-2016-94-7-6-10

Views: 820


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)