Preview

Tuberculosis and Lung Diseases

Advanced search

The predictive function of rates of matrix metalloproteinases/inhibitors system when assessing reparative changes in the lung tissue in those with infiltrate pulmonary tuberculosis

https://doi.org/10.21292/2075-1230-2018-96-9-38-44

Abstract

The objective: to study the rates of matrix metalloproteinases/inhibitors system in infiltrate pulmonary tuberculosis during changes occurring in the intensive phase of treatment in order to develop a statistic model aimed to predict reparative changes.

Subjects and methods. The test of ELISA (Bender MedSystems, USA) was used to measure the levels of MMP-1, MMP-8,-9. TIMM and α2-macroglobulin in blood serum of 35 patients with verified infiltrate pulmonary tuberculosis and various reparative changes during the intensive phase of treatment. The extension of infiltrative changes in the lung tissue was calculated (Vitrea, Nodule Analysis). The software of Statistica 10, ANOVA Repeated Measures and multiple discriminant analysis were used.

Results. Infiltrate pulmonary tuberculosis disrupts the balance in MMP/inhibitors system regardless of the character of reparative changes: MMP-9 goes higher and the reference level of TIMM-1 and α2-macroglobulin persists. The level of MMP-9 significantly goes down but does not become normal in all variants of the disease involution. Persisting high levels of MMP-8 reduces the chances of cavity healing, while the increasing level of MMP-1 promotes resolution of cavities. To predict the character of reparative changes upon the completion of the intensive phase of treatment of infiltrate pulmonary tuberculosis, the combination of levels of MMP/inhibitors with lung tissue changes during the intensive phase of treatment is the most informative.

About the Authors

D. S. Esmedlyaevа
Saint-Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Dilyara S. Esmedlyaeva - Candidate of Biological Sciences, Senior Researcher.

2-4, Ligovsky Ave., St. Petersburg, 191036,Phone: +7 (812) 297-86-03



N. P. Аlekseevа
Saint-Petersburg State Research Institute of Phthisiopulmonology; Valdman Institute of Pharmacology; St. Petersburg University
Russian Federation

Nina P. Alekseeva - Candidate of Physical and Mathematical Sciences, Senior Researcher of Scientific Technical Information Department.

2-4, Ligovsky Ave., St. Petersburg, 191036



P. V. Gаvrilov
Saint-Petersburg State Research Institute of Phthisiopulmonology; St. Petersburg University
Russian Federation

Pavel V. Gavrilov - Candidate of Medical Sciences, Head of Instrumental Diagnostics Department.

2-4, Ligovsky Ave., St. Petersburg, 191036



M. V. Pаvlovа
Saint-Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Maria V. Pavlova - Doctor of Medical Sciences, Professor, High Level Certificate Physician Specializing in Phthisiology, Leading Researcher.

2-4, Ligovsky Ave., St. Petersburg, 191036, Phone: +7 (812) 579-24-90



M. E. Dyakovа
Saint-Petersburg State Research Institute of Phthisiopulmonology
Russian Federation

Marina E. Dyakova - Candidate of Biological Sciences, Senior Researcher.

2-4, Ligovsky Ave., St. Petersburg, 191036, Phone: +7 (812) 297-86-03



E. G. Sokolovich
Saint-Petersburg State Research Institute of Phthisiopulmonology; St. Petersburg University
Russian Federation

Evgeniy G. Sokolovich - Doctor of Medical Sciences, Professor, High Level Certificate Surgeon, High Level Certificate Thoracic Surgeon, Deputy Director for Research.

2-4, Ligovsky Ave., St. Petersburg, 191036, Phone: +7 (812) 579-64-22



References

1. Аlekseeva N.P., Аlekseev А.O., Аnanievskaya P.V., Belyakova L.А., Komleva D.M., Kocheryzhkina M.M., Nakatseva E.V., Moiseeva O.M., Chuev D.V., Bondarenko B.B. The method of multilayer classification for prediction of post-operative complications. Translyatsionnaya Meditsina, 2014, vol. 4, no. 29, pp. 11-18. (In Russ.)

2. Mikhaylov L.А., Baulin I.А., Volodich O.S. The analysis of specific structural changes detected by computer tomography in pulmonary tuberculosis patients with concurrent chronic obstructive pulmonary disease. Med. Alyans, 2015, no. 2, pp. 62-69. (In Russ.)

3. Novitskiy B.B., Strelis A.K., Urazova O.I., Voronkova O.V., Tkachenko S.B., Perevozchikova T.V., Esimova I.E., Zemlyanaya N.А., Shilko T.А., Filinyuk O.V, Sinitsyna V.А. Specifics of blood lymphocytes functional activity in pulmonary tuberculosis patients. Immunologiya, 2006, vol. 27, no. 2, pp. 76-79. (In Russ.)

4. Titarenko O.T., Dyakova M.E., Esmedlyaeva D.S., Manicheva O.А., Аlekseeva N.P., Dogonadze M.Z., Perova T.L. The character of inflammatory response depending on the properties of tuberculous mycobacteria and the specific course of the disease. Biomeditsinskya Khimiya, 2013, vol. 59, no. 4, pp. 469-478. (In Russ.)

5. Esmedlyaeva D.S., Аlekseeva N.P., Sapozhnikova N.V., Dyakova M.E., Perova T.L., Kiryukhina L.D., Zhuravlev V.Yu. The system of matrix metalloproteinases/inhibitors in infiltrate pulmonary tuberculosis and its function for assessment of the intensive phase of treatment. Biomeditsinskya Khimiya, 2016, vol. 62, no. 5, pp. 593-598. (In Russ.)

6. Alexeyeva N. Dual balance correction in repeated measures ANOVA with missing data. Electron. J. Applied Statistical Analysis, 2017, vol. 10, no. 1, pp. 146-159.

7. Cui N., Hu M., Khalil R. A. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci., 2017, vol. 147, pp. 1-73.

8. Greenlee K. J., Werb Z., Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol. Rev., 2007, vol. 87, no. 1, pp. 69-98.

9. Henry M.T., McMahon K., Mackarel A.J., Prikk K., Sorsa T., Maisi P., Sepper R., FitzGerald M.X., O'Connor C. M. Matrix metalloproteinases and tissue inhibitors of metalloproteinases-1 in case of sarcoidosis and IPF. Eur. Respir. J., 2002, vol. 20, pp. 1220-1227.

10. Houghton A.M. Matrix metalloproteinases in destructive lung disease. Matrix Biol., 2015, vol. 44-46, pp. 167-174.

11. Hrabec E., Strek M., Zieba M., Kwiatkowska S., Hrabec Z. Circulation level of matrix metalloproteinase-9 is correlated with disease severity in tuberculosis patients. Int. J. Tuberc. Lung Dis., 2002, vol. 6, no. 8, pp. 713-719.

12. Kaufmann S.H., Dorhoi A. Inflammation in tuberculosis: interactions, imbalances and interventions. Curr. Opin. Immunol., 2013, vol. 25, no. 4, pp. 441-449.

13. Kubler A., Luna B., Larsson C., Ammerman N.C., Andrade B.B., Orandle M., Bock K.W., Xu Z., Bagci U., Molura D.J. et al. Mycobacterium tuberculosis dysregulates MMP/TIMP balance to drive rapid cavitation and unrestrained bacterial proliferation. J. Pathol., 2015, vol. 235, pp. 431-444.

14. Ong C.W., Elkington P.T., Brilha S., Ugarte-Gil C., Tome-Esteban M.T., Tezera L.B., Pabisiak P.J., Moores R.C., Sathyamoorthy T., Patel V., Gilman R.H., Porter J.C., Friedland J.S. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog., 2015, vol. 11, no. 5, pp. 1-21.

15. Ong C.W., Elkington P.T., Friedland J.S. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases. Am. J. Resp., Crit. Care Med., 2014, vol. 190, no. 1, pp. 9-18.

16. Salgame P. MMPs in tuberculosis: granuloma creators and tissue destroyers. J. Clin. Invest., 2011, vol. 121, pp. 1686-1688.

17. Seddon J., Kasprowicz V., Walker N.F., Yuen H.M., Sunpath H., Tezera L. et al. Procollagen III N-terminal propeptide and desmosine are released by matrix destruction in pulmonary tuberculosis. J. Infect. Dis., 2013, vol. 208, no. 10, pp. 1571-1579.

18. Shevtsov M.A., Smagina L.V., Kudriavtceva T.A., Petlenko S.V., Voronkina I.V. Glu-Trp-ONa or its acylated analogue (R-Glu-Trp-ONa) administration enhances the wound healing in the model of chronic skin wounds in rabbits. Drug Design, Development and Therapy, 2015, vol. 9, pp. 1717-1727.

19. Singh S., Kubler A., Singh U.K., Singh A., Gardiner H., Prasad R., Elkington P.T., Friedland J.S. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis. Antimicrob Agents Chemother., 2014, vol. 58, no. 8, pp. 4657-4665.

20. Smigiel K.S., Parks W.C. Matrix Metalloproteinases and Leukocyte Activation. Prog. Mol. Biol. Transl. Sci., 2017, vol. 47, pp. 167-195.

21. Ugarte-Gil C.A., Elkington P., Gilman R.H., Coronel J., Tezera L.B., Bernabe-Ortiz A. et al. Induced sputum MMP-1, -3 & -8 concentrations during treatment of tuberculosis. PLoS One, 2013, vol. 8, no. 4, pp. 1-8.


Review

For citations:


Esmedlyaevа D.S., Аlekseevа N.P., Gаvrilov P.V., Pаvlovа M.V., Dyakovа M.E., Sokolovich E.G. The predictive function of rates of matrix metalloproteinases/inhibitors system when assessing reparative changes in the lung tissue in those with infiltrate pulmonary tuberculosis. Tuberculosis and Lung Diseases. 2018;96(9):38-44. (In Russ.) https://doi.org/10.21292/2075-1230-2018-96-9-38-44

Views: 1022


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)