ВНЕКЛЕТОЧНЫЕ МИКРОВЕЗИКУЛЯРНЫЕ ЧАСТИЦЫ В ПАТОГЕНЕЗЕ ТУБЕРКУЛЕЗА


https://doi.org/10.21292/2075-1230-2019-97-1-41-51

Полный текст:


Аннотация

В обзоре дается представление об основных классах внеклеточных микровезикулярных частиц, механизмах их биогенеза и возможной роли в развитии туберкулезной инфекции. Особое внимание уделено роли апоптоза инфицированных микобактериями туберкулеза макрофагов, генерации апоптотических эктосом и участию последних в формировании противотуберкулезного иммунного ответа.

Заключение: механизмы апоптотического блеббинга, собственно эктосомы и процессы клиринга этих частиц, возможно, могут стать в будущем новым инструментом патогенетической терапии туберкулеза.


Об авторах

А. Е. Петренко
ФГБУ «Новосибирский научно-исследовательский институт туберкулеза» МЗ РФ; ФГАОУ ВО «Новосибирский национальный исследовательский государственный университет (НГУ)»
Россия
Петренко Антонина Евгеньевна - студентка
630040 г. Новосибирск, ул. Охотская, д. 81а


Я. Ш. Шварц
ФГБУ «Новосибирский научно-исследовательский институт туберкулеза» МЗ РФ
Россия
Шварц Яков Шмульевич - заместитель директора по науке
630040 г. Новосибирск, ул. Охотская, д. 81а


С. Н. Белогородцев
ФГБУ «Новосибирский научно-исследовательский институт туберкулеза» МЗ РФ
Россия
Белогородцев Сергей Николаевич - старший научный сотрудник
630040 г. Новосибирск, ул. Охотская, д. 81а


Список литературы

1. Тамкович С. Н., Тутанов О. С., Лактионов П. П. Экзосомы: механизмы возникновения, состав, транспорт, биологическая активность, использование в диагностике // Биологические мембраны. ‒ 2016. ‒ Т. 33, № 3. ‒ С. 163-175.

2. Akers J. C., Gonda D., Kim R., Carter B. S., Chen C. C. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies // J. Neurooncol. ‒ 2013. ‒ Vol. 113, № 1. ‒ Р. 1-11.

3. Alenquer M., Amorim M. J. Exosome biogenesis, regulation, and function in viral infection // Viruses. ‒ 2015. ‒ Vol. 7, № 9. ‒ Р. 5066-5083.

4. Alipoor S. D., Mortaz E., Garssen J., Movassaghi M., Mirsaeidi M., Adcock I. M. Exosomes and exosomal miRNA in respiratory diseases //Mediators. Inflamm. ‒ 2016. ‒ Vol. 5628404.

5. Alipoor S. D., Mortaz E., Tabarsi P. et al. Bovis Bacillus Calmette-Guerin (BCG) infection induces exosomal miRNA release by human macrophages // J. Transl. Med. ‒ 2017. ‒ Vol. 15, № 1. ‒ Р. 105.

6. Anand P. K., Anand E., Bleck C. K., Anes E., Griffiths G. Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria // PLoS One. ‒ 2010. ‒ Vol. 5, № 4. ‒ Р. e10136.

7. Andre F., Schartz N. E., Movassagh M. et al. Malignant effusions and immunogenic tumour-derived exosomes // Lancet. ‒ 2002. ‒ Vol. 360, № 9329. ‒ Р. 295-305.

8. Athman J. J., Wang Y., McDonald D. J., Boom W. H., Harding C. V., Wearsch P. A. Bacterial membrane vesicles mediate the release of Mycobacterium tuberculosis lipoglycans and lipoproteins from infected macrophages // J. Immunol. ‒ 2015. ‒ Vol. 195, № 3. ‒ Р. 1044-1053.

9. Atienzar-Aroca S., Flores-Bellver M., Serrano-Heras G. et al. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells // J. Cell. Mol. Med. ‒ 2016. ‒ Vol. 20, № 8. ‒ Р. 1457-1466.

10. Balaj L., Lessard R., Dai L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences // Nat. Commun. ‒ 2011. ‒ Vol. 2. ‒ Р. 180.

11. Baroni M., Pizzirani C., Pinotti M. et al. Stimulation of P2 (P2X7) receptors in human dendritic cells induces the release of tissue factor-bearing microparticles // FASEB. J. ‒ 2007. ‒ Vol. 21, № 8. ‒ Р. 1926-1933.

12. Batagov A. O., Kurochkin I. V. Exosomes secreted by human cells transport largely mRNA fragments that are enriched in the 3'-untranslated regions // Biol Direct. ‒ 2013. ‒ Vol. 8. ‒ Р. 12.

13. Behar S. M. Antigen-specific CD8(+) T cells and protective immunity to tuberculosis // Adv. Exp. Med. Biol. ‒ 2013. ‒ Vol. 783. ‒ Р. 141-163.

14. Behar S. M., Martin C. J., Nunes-Alves C., Divangahi M., Remold H. G. Lipids, apoptosis, and cross-presentation: links in the chain of host defense against Mycobacterium tuberculosis // Microbes Infect. ‒ 2011. ‒ Vol. 13, № 8-9. ‒ Р. 749-756.

15. Berda-Haddad Y., Robert S., Salers P. et al. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α //Proc. Natl. Acad. Sci. U S A. ‒ 2011. ‒ Vol. 108, № 51. ‒ Р. 20684-20689.

16. Bergsmedh A., Szeles A., Henriksson M. et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies // Proc. Natl. Acad. Sci. U S A. ‒ 2001. ‒ Vol. 98, № 11. ‒ Р. 6407-6411.

17. Bhatnagar S., Schorey J. S. Exosomes released from infected macrophages contain Mycobacterium avium glycopeptidolipids and are proinflammatory // J. Biol. Chem. ‒ 2007. ‒ Vol. 282, № 35. ‒ Р. 25779-25789.

18. Bhatnagar S., Shinagawa K., Castellino F. J., Schorey J. S. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo // Blood. ‒ 2007. ‒ Vol. 110, № 9. ‒ Р. 3234-3244.

19. Burger D., Schock S., Thompson C. S., Montezano A. C., Hakim A. M., Touyz R. M. Microparticles: biomarkers and beyond // Clin. Sci. (Lond). ‒ 2013. ‒ Vol. 124, № 7. ‒ Р. 423-441.

20. Cheng Y., Schorey J. S. Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection // Eur. J. Immunol. ‒ 2013. ‒ Vol. 43, № 12. ‒ Р. 3279-3290.

21. Cheng Y., Schorey J. S. Targeting soluble proteins to exosomes using a ubiquitin tag // Biotechnol. Bioeng. ‒ 2016. ‒ Vol. 113, № 6. ‒ Р. 1315-1324.

22. Choi D. S., Kim D. K., Kim Y. K., Gho Y. S. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes // Proteomics. ‒ 2013. ‒ Vol. 13, № 10-11. ‒ Р. 1554-1571.

23. Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: artefacts no more // Trends. Cell. Biol. ‒ 2009. ‒ Vol. 19, № 2. ‒ Р. 43-51.

24. Cocucci E., Racchetti G., Podini P., Meldolesi J. Enlargeosome traffic: exocytosis triggered by various signals is followed by endocytosis, membrane shedding or both // Traffic. ‒ 2007. ‒ Vol. 8, № 6. ‒ Р. 742-757.

25. Crescitelli R., Lässer C., Szabó T. G. et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes // J. Extracell. Vesicles. ‒ 2013. ‒ Vol. 2.

26. Cresswell P., Ackerman A. L., Giodini A., Peaper D. R., Wearsch P. A. Mechanisms of MHC class I-restricted antigen processing and cross-presentation // Immunol. Rev. ‒ 2005. ‒ Vol. 207. ‒ Р. 145-157.

27. Demangel C., Bean A. G., Martin E., Feng C. G., Kamath A. T., Britton W. J. Protection against aerosol Mycobacterium tuberculosisinfection using Mycobacterium bovis Bacillus Calmette Guérin-infected dendritic cells // Eur. J. Immunol. ‒ 1999. ‒ Vol. 29, № 6. ‒ Р. 1972-1979.

28. Diaz G., Wolfe L. M., Kruh-Garcia N. A., Dobos K. M. Changes in the membrane-associated proteins of exosomes released from human macrophages after Mycobacterium tuberculosis infection // Sci. Rep. ‒ 2016. ‒ Vol. 6. ‒ Р. 37975.

29. Divangahi M., Desjardins D., Nunes-Alves C., Remold H. G., Behar S. M. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis // Nat. Immunol. ‒ 2010. ‒ Vol. 11, № 8. ‒ Р. 751-758.

30. Escola J. M., Kleijmeer M. J., Stoorvogel W., Griffith J. M., Yoshie O., Geuze H. J. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes // J. Biol. Chem. ‒ 1998. ‒ Vol. 273, № 32. ‒ Р. 20121-20127.

31. Fairbairn I. P., Stober C. B., Kumararatne D. S., Lammas D. A. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome-lysosome fusion // J. Immunol. ‒ 2001. ‒ Vol. 167, № 6. ‒ Р. 3300-3307.

32. Forrellad M. A., Klepp L. I., Gioffré A. et al. Virulence factors of the Mycobacterium tuberculosis complex // Virulence. ‒ 2013. ‒ Vol. 4, № 1. ‒ Р. 3-66.

33. Garcia N. A., Ontoria-Oviedo I., González-King H., Diez-Juan A., Sepúlveda P. Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells // PLoS One. ‒ 2015. ‒ Vol. 10, № 9. ‒ Р. e0138849.

34. Garg A., Barnes P. F., Porgador A. et al. Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor // J. Immunol. ‒ 2006. ‒ Vol. 177, № 9. ‒ Р. 6192-6198.

35. Giri P. K., Schorey J. S. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo // PLoS One. ‒ 2008. ‒ Vol. 3, № 6. ‒ Р. e2461.

36. Global tuberculosis report 2017. World Health Organization. – 2017. – pp. 262. ISBN 978-92-4-156551-6.

37. Gould S. J., Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles // J. Extracell. Vesicles. ‒ 2013. ‒ Vol. 2.

38. Grotzke J. E., Harriff M. J., Siler A. C. et al. The Mycobacterium tuberculosis phagosome is a HLA-I processing competent organelle //PLoS Pathog. ‒ 2009. ‒ Vol. 5, № 4. ‒ Р. e1000374.

39. Grotzke J. E., Siler A. C., Lewinsohn D. A., Lewinsohn D. M. Secreted immunodominant Mycobacterium tuberculosis antigens are processed by the cytosolic pathway // J. Immunol. ‒ 2010. ‒ Vol. 185, № 7. ‒ Р. 4336-4343.

40. Guescini M., Genedani S., Stocchi V., Agnati L. F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA // J. Neural. Transm (Vienna). ‒ 2010. ‒ Vol. 117, № 1. ‒ Р. 1-4.

41. Hanekom W. A., Mendillo M., Manca C. et al. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro // J. Infect. Dis. ‒ 2003. ‒ Vol. 188, № 2. ‒ Р. 257-266.

42. Heijnen H. F., Schiel A. E., Fijnheer R., Geuze H. J., Sixma J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules // Blood. ‒ 1999. ‒ Vol. 94, № 11. ‒ Р. 3791-3799.

43. Hsu T., Hingley-Wilson S. M., Chen B. et al. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue // Proc. Natl. Acad. Sci. U S A. ‒ 2003. ‒ Vol. 100, № 21. ‒ Р. 12420-12425.

44. Hugel B., Martínez M. C., Kunzelmann C., Freyssinet J. M. Membrane microparticles: two sides of the coin // Physiology (Bethesda). ‒ 2005. ‒ Vol. 20. ‒ Р. 22-27.

45. Huotari J., Helenius A. Endosome maturation // EMBO J. ‒ 2011. ‒ Vol. 30, № 17. ‒ Р. 3481-3500.

46. Inaba K., Inaba M., Naito M., Steinman R. M. Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo // J. Exp. Med. ‒ 1993. ‒ Vol. 178, № 2. ‒ Р. 479-488.

47. Ji H., Erfani N., Tauro B. J. et al. Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes //Electrophoresis. ‒ 2008. ‒ Vol. 29, № 12. ‒ Р. 2660-2671.

48. Jiang L., Paone S., Caruso S. et al. Determining the contents and cell origins of apoptotic bodies by flow cytometry // Sci. Rep. ‒ 2017. ‒ Vol. 7, № 1. ‒ Р. 14444.

49. Johnstone R. M., Adam M., Hammond J. R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) // J. Biol. Chem. ‒ 1987. ‒ Vol. 262, № 19. ‒ Р. 9412-9420.

50. Kahner B. N., Dorsam R. T., Kunapuli S. P. Role of P2Y receptor subtypes in platelet-derived microparticle generation // Front. Biosci. ‒ 2008. ‒ Vol. 13. ‒ Р. 433-439.

51. Kharaziha P., Ceder S., Li Q., Panaretakis T. Tumor cell-derived exosomes: a message in a bottle // Biochim. Biophys. Acta. ‒ 2012. ‒ Vol. 1826, № 1. ‒ Р. 103-111.

52. Kruh-Garcia N. A., Wolfe L. M., Chaisson L. H. et al. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS // PLoS One. ‒ 2014. ‒ Vol. 9, № 7. ‒ Р. e103811.

53. Kruh-Garcia N. A., Wolfe L. M., Dobos K. M. Deciphering the role of exosomes in tuberculosis // Tuberculosis (Edinb). ‒ 2015. ‒ Vol. 95, № 1. ‒ Р. 26-30.

54. Kumar P. IFNγ-producing CD4 // Clin. Transl. Med. ‒ 2017. ‒ Vol. 6, № 1. ‒ Р. 21.

55. Kumar S., Puniya B. L., Parween S., Nahar P., Ramachandran S. Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis // PLoS. One. ‒ 2013. ‒ Vol. 8, № 7. ‒ Р. e69790.

56. Kurywchak P., Tavormina J., Kalluri R. The emerging roles of exosomes in the modulation of immune responses in cancer // Genome Med. ‒ 2018. ‒ Vol. 10, № 1. ‒ Р. 23.

57. Lafourcade C., Sobo K., Kieffer-Jaquinod S., Garin J., van der Goot F. G. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization // PLoS One. ‒ 2008. ‒ Vol. 3, № 7. ‒ Р. e2758.

58. Lai R. C., Arslan F., Lee M. M. et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury // Stem. Cell. Res. ‒ 2010. ‒ Vol. 4, № 3. ‒ Р. 214-222.

59. Lee J., Kim S. H., Choi D. S. et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis // Proteomics. ‒ 2015. ‒ Vol. 15, № 19. ‒ Р. 3331-3337.

60. Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A. V. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers // Philos. Trans. R. Soc. Lond. B. Biol. Sci. ‒ 2014. ‒ Vol. 369. ‒ Р. 1652.

61. Lin J., Wang Y., Zou Y. Q. et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia // Tumour. Biol. ‒ 2016.

62. Llorente A., Skotland T., Sylvänne T. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells // Biochim. Biophys. Acta. ‒ 2013. ‒ Vol. 1831, № 7. ‒ Р. 1302-1309.

63. Loeuillet C., Martinon F., Perez C., Munoz M., Thome M., Meylan P. R. Mycobacterium tuberculosis subverts innate immunity to evade specific effectors // J. Immunol. ‒ 2006. ‒ Vol. 177, № 9. ‒ Р. 6245-6255.

64. Luo S. S., Ishibashi O., Ishikawa G. et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes // Biol. Reprod. ‒ 2009. ‒ Vol. 81, № 4. ‒ Р. 717-729.

65. Lv L., Li C., Zhang X. et al. RNA рrofiling analysis of the serum exosomes derived from patients with active and latent // Front Microbiol. ‒ 2017. ‒ Vol. 8. ‒ Р. 1051.

66. Marshansky V., Futai M. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function // Curr. Opin. Cell. Biol. 2008. ‒ Vol. 20, № 4. ‒ Р. 415-426.

67. Martin C. J., Carey A. F., Fortune S. M. A bug's life in the granuloma // Semin Immunopathol. ‒ 2016. ‒ Vol. 38, № 2. ‒ Р. 213-220.

68. Mehaffy C., Dobos K. M., Nahid P., Kruh-Garcia N. A. Second generation multiple reaction monitoring assays for enhanced detection of ultra-low abundance // Clin. Proteomics. ‒ 2017. ‒ Vol. 14. ‒ Р. 21.

69. Molloy A., Laochumroonvorapong P., Kaplan G. Apoptosis, but not necrosis, of infected monocytes is coupled with killing of intracellular bacillus Calmette-Guérin // J. Exp. Med. ‒ 1994. ‒ Vol. 180, № 4. ‒ Р. 1499-1509.

70. Muralidharan-Chari V., Clancy J., Plou C. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles // Curr. Biol. ‒ 2009. ‒ Vol. 19, № 22. ‒ Р. 1875-1885.

71. Mustafa T., Wiker H. G., Mørkve O., Sviland L. Reduced apoptosis and increased inflammatory cytokines in granulomas caused by tuberculous compared to non-tuberculous mycobacteria: role of MPT64 antigen in apoptosis and immune response // Clin. Exp. Immunol. ‒ 2007. ‒ Vol. 150, № 1. ‒ Р. 105-113.

72. Mustafa T., Wiker H. G., Mørkve O., Sviland L. Differential expression of mycobacterial antigen MPT64, apoptosis and inflammatory markers in multinucleated giant cells and epithelioid cells in granulomas caused by Mycobacterium tuberculosis // Virchows. Arch. ‒ 2008. ‒ Vol. 452, № 4. ‒ Р. 449-456.

73. Nolte-'t Hoen E. N., Buermans H. P., Waasdorp M., Stoorvogel W., Wauben M. H., 't Hoen P. A. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions // Nucleic. Acids. Res. ‒ 2012. ‒ Vol. 40, № 18. ‒ Р. 9272-9285.

74. Oddo M., Renno T., Attinger A., Bakker T., MacDonald H. R., Meylan P. R. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis // J. Immunol. ‒ 1998. ‒ Vol. 160, № 11. ‒ Р. 5448-5454.

75. Pandey R., Rodriguez G. M. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice // Infect. Immun. ‒ 2012. ‒ Vol. 80, № 10. ‒ Р. 3650-3659.

76. Panigrahi G. K., Praharaj P. P., Peak T. C. et al. Hypoxia-induced exosome secretion promotes survival of African-American and Caucasian prostate cancer cells // Sci. Rep. ‒ 2018. ‒ Vol. 8, № 1. ‒ Р. 3853.

77. Peters P. J., Geuze H. J., Van der Donk H. A. et al. Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes // Eur. J. Immunol. ‒1989. ‒ Vol. 19, № 8. ‒ Р. 1469-1475.

78. Potolicchio I., Carven G. J., Xu X. et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism // J. Immunol. ‒ 2005. ‒ Vol. 175, № 4. ‒ Р. 2237-2243.

79. Prados-Rosales R., Weinrick B. C., Piqué D. G., Jacobs W. R., Casadevall A., Rodriguez G. M. Role for Mycobacterium tuberculosismembrane vesicles in iron acquisition // J. Bacteriol. ‒ 2014. ‒ Vol. 196, № 6. ‒ Р. 1250-1256.

80. Puiffe M. L., Lachaise I., Molinier-Frenkel V., Castellano F. Antibacterial properties of the mammalian L-amino acid oxidase IL4I1 // PLoS One. ‒ 2013. ‒ Vol. 8, № 1. ‒ Р. e54589.

81. Raghuvanshi S., Sharma P., Singh S., Van Kaer L., Das G. Mycobacterium tuberculosis evades host immunity by recruiting mesenchymal stem cells // Proc. Natl. Acad. Sci. U S A. ‒ 2010. ‒ Vol. 107, № 50. ‒ Р. 21653-21658.

82. Raposo G., Nijman H. W., Stoorvogel W. et al. B lymphocytes secrete antigen-presenting vesicles // J. Exp. Med. ‒ 1996. ‒ Vol. 183, № 3. ‒ Р. 1161-1172.

83. Raposo G., Tenza D., Mecheri S., Peronet R., Bonnerot C., Desaymard C. Accumulation of major histocompatibility complex class IImolecules in mast cell secretory granules and their release upon degranulation // Mol. Biol. Cell. ‒ 1997. ‒ Vol. 8, № 12. ‒ Р. 2631-2645.

84. Ratajczak J., Wysoczynski M., Hayek F., Janowska-Wieczorek A., Ratajczak M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication // Leukemia. ‒ 2006. ‒ Vol. 20, № 9. ‒ Р. 1487-1495.

85. Ratajczak M. Z., Ratajczak J. Extracellular microvesicles as game changers in better understanding the complexity of cellular interactions-from bench to clinical applications // Am. J. Med. Sci. ‒ 2017. ‒ Vol. 354, № 5. ‒ Р. 449-452.

86. Reddy P. V., Puri R. V., Khera A., Tyagi A. K. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection // J. Bacteriol. ‒ 2012. ‒ Vol. 194, № 3. ‒ Р. 567-575.

87. Schaaf K., Smith S. R., Duverger A. et al. Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis // Sci. Rep. ‒ 2017. ‒ Vol. 7. ‒ Р. 42101.

88. Schaible U. E., Winau F., Sieling P. A. et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis // Nat. Med. ‒ 2003. ‒ Vol. 9, № 8. ‒ Р. 1039-1046.

89. Shekhawat S. D., Purohit H. J., Taori G. M., Daginawala H. F., Kashyap R. S. Evaluation of heat shock proteins for discriminating between latent tuberculosis infection and active tuberculosis: A preliminary report // J. Infect. Public. Health. ‒ 2016. ‒ Vol. 9, № 2. ‒ Р. 143-152.

90. Simons M., Raposo G. Exosomes-vesicular carriers for intercellular communication // Curr. Opin. Cell. Biol. ‒ 2009. ‒ Vol. 21, № 4. ‒ Р. 575-581.

91. Singh P. P., LeMaire C., Tan J. C., Zeng E., Schorey J. S. Exosomes released from M. tuberculosis infected cells can suppress IFN-γmediated activation of naïve macrophages // PLoS. One. ‒ 2011. ‒ Vol. 6, № 4. ‒ Р. e18564.

92. Singh P. P., Smith V. L., Karakousis P. C., Schorey J. S. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo // J. Immunol. ‒ 2012. ‒ Vol. 189, № 2. ‒ Р. 777-785.

93. Skog J., Würdinger T., van Rijn S. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers // Nat. Cell. Biol. ‒ 2008. ‒ Vol. 10, № 12. ‒ Р. 1470-1476.

94. Smith V. L., Cheng Y., Bryant B. R., Schorey J. S. Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosisinfection // Sci. Rep. ‒ 2017. ‒ Vol. 7. ‒ Р. 43578.

95. Smith V. L., Jackson L., Schorey J. S. Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes // J. Immunol. ‒ 2015. ‒ Vol. 195, № 6. ‒ Р. 2722-2730.

96. Subra C., Laulagnier K., Perret B., Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies // Biochimie. ‒ 2007. ‒ Vol. 89, № 2. ‒ Р. 205-212.

97. Thakur B. K., Zhang H., Becker A. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection // Cell. Res. ‒ 2014. ‒ Vol. 24, № 6. ‒ Р. 766-769.

98. Théry C., Regnault A., Garin J. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73 // J. Cell. Biol. ‒ 1999. ‒ Vol. 147, № 3. ‒ Р. 599-610.

99. Théry C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function // Nat. Rev. Immunol. ‒ 2002. ‒ Vol. 2, № 8. ‒ Р. 569-579.

100. Tickner J. A., Urquhart A. J., Stephenson S. A., Richard D. J., O'Byrne K. J. Functions and therapeutic roles of exosomes in cancer // Front. Oncol. ‒ 2014. ‒ Vol. 4. ‒ Р. 127.

101. Trams E. G., Lauter C. J., Salem N., Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles // Biochim. Biophys Acta. 1981. ‒ Vol. 645, № 1. ‒ Р. 63-70.

102. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J. J., Lötvall J. O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells // Nat. Cell. Biol. ‒ 2007. ‒ Vol. 9, № 6. ‒ Р. 654-659.

103. van der Wel N., Hava D., Houben D. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells // Cell. ‒ 2007. ‒ Vol. 129, № 7. ‒ Р. 1287-1298.

104. Vidal M. J., Stahl P. D. The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation // Eur. J. Cell Biol. ‒ 1993. ‒ Vol. 60, № 2. ‒ Р. 261-267.

105. Vojtech L., Woo S., Hughes S. et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions // Nucleic. Acids Res. ‒ 2014. ‒ Vol. 42, № 11. ‒ Р. 7290-7304.

106. Walters S. B., Kieckbusch J., Nagalingam G. et al. Microparticles from mycobacteria-infected macrophages promote inflammation and cellular migration // J. Immunol. ‒ 2013. ‒ Vol. 190, № 2. ‒ Р. 669-677.

107. Winau F., Kaufmann S. H., Schaible U. E. Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria // Cell. Microbiol. ‒ 2004. ‒ Vol. 6, № 7. ‒ Р. 599-607.

108. Winau F., Weber S., Sad S. et al. Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis // Immunity. 2006. ‒ Vol. 24, № 1. ‒ Р. 105-117.

109. Woodworth J. S., Behar S. M. Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity // Crit. Rev. Immunol. ‒ 2006. ‒ Vol. 26, № 4. ‒ Р. 317-352.

110. Wubbolts R., Leckie R. S., Veenhuizen P. T. et al. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation // J. Biol. Chem. 2003. ‒ Vol. 278, № 13. ‒ Р. 10963-10972.

111. Yang M., Chen J., Su F. et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells //Mol. Cancer. ‒ 2011. ‒ Vol. 10. ‒ Р. 117.

112. Zitvogel L., Regnault A., Lozier A. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes // Nat. Med. ‒ 1998. ‒ Vol. 4, № 5. ‒ Р. 594-600.


Дополнительные файлы

Для цитирования: Петренко А.Е., Шварц Я.Ш., Белогородцев С.Н. ВНЕКЛЕТОЧНЫЕ МИКРОВЕЗИКУЛЯРНЫЕ ЧАСТИЦЫ В ПАТОГЕНЕЗЕ ТУБЕРКУЛЕЗА. Туберкулез и болезни легких. 2019;97(1):41-51. https://doi.org/10.21292/2075-1230-2019-97-1-41-51

For citation: Petrenko A.E., Shvartz Y.S., Belogorodtsev S.N. EXTRACELLULAR MICROVESICULAR PARTICLES IN THE PATHOGENESIS OF TUBERCULOSIS. Tuberculosis and Lung Diseases. 2019;97(1):41-51. (In Russ.) https://doi.org/10.21292/2075-1230-2019-97-1-41-51

Просмотров: 125

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)