Preview

Tuberculosis and Lung Diseases

Advanced search

In vitro photodynamic inactivation of Mycobacterium tuberculosis by methylene blue

https://doi.org/10.21292/2075-1230-2019-97-7-28-33

Abstract

The objective: to investigate the anti-tuberculosis effect of laser photodynamic inactivation (PDI) of M. tuberculosis H37Rv in vitro by methylene blue (MB) in the minimum concentration (1 μg/ml) with laser radiation of 662 nm.

Subjects and methods. A comparative analysis of the intensity of growth of Mycobacterium tuberculosis H37Rv after laser irradiation and laser FDI by MB with different doses of light energy was carried out.

Results. Laser radiation with a wavelength of 662 nm was found to have an inhibitory effect on the growth of M. tuberculosis H37Rv. FDI of Mycobacterium tuberculosis was first registered in the presence of a minimum concentration of MB (1 µg/ml) which suppressed colony growth by 97 and 93% when they were processed by radiation with a wavelength of 662 nm with the lowest density of doses of light energy (46.9 and 93.75 J/cm2).

About the Authors

D. A. Bredikhin
Novosibirsk State University; Novosibirsk State Regional Clinical Tuberculosis Hospital
Russian Federation

Demid A. Bredikhin - Leading Engineer of Laboratory for Use of Quantum Materials, Devices and Systems within Cross-Disciplinary Quantum Center.

14, Vavilova St., Novosibirsk, 630082



S. D. Nikonov
Novosibirsk Tuberculosis Research Institute; Novosibirsk State University; Novosibirsk State Regional Clinical Tuberculosis Hospital
Russian Federation

Sergey D. Nikonov - Doctor of Medical Sciences, Professor, Head of Laboratory for Use of Quantum Materials, Devices and Systems within Cross-Disciplinary Quantum Center.

14, Vavilova St., Novosibirsk, 630082, Phone: +7 (383) 225-59-81



A. G. Cherednichenko
Novosibirsk Tuberculosis Research Institute; Novosibirsk State University
Russian Federation

Andrey G. Cherednichenko - Leading Engineer of Laboratory for Use of Quantum Materials, Devices and Systems within Cross-Disciplinary Quantum Center.

14, Vavilova St., Novosibirsk, 630082, Phone: +7 (383) 203-83-62



T. I. Petrenko
Novosibirsk Tuberculosis Research Institute
Russian Federation

Tatiana I. Petrenko - Doctor of Medical Sciences, Chief Researcher.

81a, Okhotskaya St., Novosibirsk, 630040, Phone: +7 (383) 203-83-58


A. I. Korbut
Research Institute of Clinical and Experimental Lymphology – Branch of Federal Research Center of Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Anton I. Korbut - Junior Researcher of Endocrinology Laboratory.

2, Timakova St., Novosibirsk, 630117, Phone: +7 (383) 336-40-22


References

1. Bredikhin D.А., Nikonov S.D., Cherednichenko А.G., Petrenko T.I., Ivanenko А.V., Mirzoev M.M. Effect of laser radiation with 662 nm wave on in vitro growth of Mycobacterium tuberculosis. Tuberculosis and Lung Diseases, 2017, vol. 95, no. 8, pp. 63-66. (In Russ.) doi: 10.21292/2075-1230-2017-95-8-63-66.

2. Bredikhin D.А., Nikonov S.D., Cherednichenko А.G., Petrenko T.I. In vitro photodynamic inactivation of Mycobacterium tuberculosis. Tuberculosis and Lung Diseases, 2018, vol. 96, no. 1, pp. 5-10. (In Russ.) doi: 10.21292/2075-1230-2018-96-1-5-10.

3. Brill G.E., Manaenkova E.V., Skvortsova V.V. Sposob podavleniya rosta polirezistentnykh shtammov Mycobacterium tuberculosis v eksperimente. [The method for inhbition of growth of polyresistant strains of Mycobacterium tuberculosis in the experiment]. RF Patent 2628624. Applied as of 31.03.2016. Published as of 21.08.2017. Bull. no. 24.

4. Brill G.E., Skvortsova V.V., Manaenkova E.V. Photodynamic inhibition of M. tuberculosis growth in the culture. Biomedical Photonics, 2018, no. S1, pp. 13. (In Russ.)

5. Egorova А.V., Brill G.E., Bugaeva I.O., Tuchina E.S., Nechaeva O.V. Photodynamic impact of laser red emission on the growth of Staphylococcus aureus strains using Fotoditazin. Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Khimiya. Biologiya. Ekologiya, 2017, vol. 17, no. 4, pp. 428-431. (In Russ.) doi: 10.18500/1816-9775-2017-17-4-428-431.

6. Pavlov А.V., Smertina E.Yu., Donchenko N.А. The anti-microbial action of methylene blue photosensitiser on the culture of Staphylococcus aureus. Sibirskiy Vestnik Selskokhozyaystvennoy Nauki, 2013, no. 3, pp. 91-94. (In Russ.)

7. Shmigol T.А., Sobyanin K.А., Prusak-Glotov M.V., Schelykalina S.P., Nevezhin E.V., Ermolaeva S.А., Negrebetskiy V.V. Anti-microbial photodynamic therapy based on MC540 using the wound infection model. Bulletin of RGMU, 2018, no. 1, pp. 30-35. (In Russ.) doi: 10.24075/vrgmu.2018.011.

8. Dos Santos Fernandes G.F., Jornada D.H., de Souza P.C. et al. Current advances in antitubercular drug discovery: Potent prototypes and new targets.. J. Curr. Med., Chemistry, 2015, vol. 22, issue 27, pp. 3133-3161. doi: 10.2174/0929867322666150818103836.

9. Du Toit L.C., Pillay V., Danckwerts M.P. Tuberculosis chemotherapy: current drug delivery approaches. Respiratory Research, 2006, vol. 7, pp. 118, doi: 10.1186/1465-9921-7-118.

10. Feese E., Ghiladi R.A. Highly efficient in vitro photodynamic inactivation of mycobacterium smegmatis. J. Antimicrob. Chemother., 2009, vol. 64, iss. 4, pp. 782-785. doi: 10.1093/jac/dkp278.15

11. Grinholc M., Szramka B., Olender K., Graczyk A. Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Acta Biochimica Polonica, 2007, vol. 54, iss. 3, pp. 665-670.

12. Hamblin M.R., Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? J. Photochem Photobiol Sci., 2004, vol. 3, iss. 5, pp. 436-450. doi: 10.1039/B311900A.

13. Liu Yao, Qin Rong, Zaat Sebastian A.J., Breukink Eefjan, Heger Michal. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Translat. Research, 2015, vol. 1, iss. 3, pp. 140-167. doi: 10.18053/jctres.201503.002.

14. Møller K.I., Kongshoj B., Philipsen P.A., Thomsen V.O., Wulf H.C. How finsen's light cured lupus vulgaris. J. Photodermatology, Photoimmunology & Photomedicine, 2005, vol. 21, pp. 118-124. doi: 10.1111/j.1600-0781.2005.00159.x.

15. Nikitushkin V.D., Shleeva M.O., Zinin A.I., et al. The main pigment of the dormant Mycobacterium smegmatis is porphyrin. FEMS Microbiology Letters, 2016, vol. 363, Iss. 19. doi.org/10.1093/femsle/fnw206.

16. O'Riordan K., Sharlin D.S., Gross J. et al. Photoinactivation of mycobacteria in vitro and in a new murine model of localized Mycobacterium bovis BCG-induced granulomatous infection. J. Antimicrob Agents Chemother., 2006, vol. 50, no. 5, pp. 1828-1834. doi: 10.1128/AAC.50.5.1828-1834.2006.

17. Shih M.H., Huang F.C. Effects of photodynamic therapy on rapidly growing nontuberculous mycobacteria keratitis. J. Investigative Ophthalmology & Visual Science, 2011, vol. 52, no. 1, pp. 223-229. doi: 10.1167/iovs.10-5593.

18. Shim Insoo, Choi Myungwon, Min Yegee et al. Effect of Methylene Blue-mediated Photodynamic Therapy on Wild-type and Ciprofloxacin-resistant Mycobacterium smegmatis. J. Bacteriol. Virolology, 2016, vol. 46, no. 1, pp. 27-35. https://doi.org/10.4167/jbv.2016.46.1.27.

19. Sung Nachmoon, Ra Yonjoon, Back Sunmi, et al. Inactivation of multidrug resistant (MDR) ‒ and extensively drug resistant (XDR) ‒ Mycobacterium tuberculosis by photodynamic therapy. J. Photodiagnosis and Photodinamic Therapy, 2013, vol. 10, iss. 4, pp. 694-702. doi: 10.1016/j.pdpdt.2013.09.001.


Review

For citations:


Bredikhin D.A., Nikonov S.D., Cherednichenko A.G., Petrenko T.I., Korbut A.I. In vitro photodynamic inactivation of Mycobacterium tuberculosis by methylene blue. Tuberculosis and Lung Diseases. 2019;97(7):28-33. (In Russ.) https://doi.org/10.21292/2075-1230-2019-97-7-28-33

Views: 1906


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)