Неэффективность вакцины BCG для защиты от туберкулезной инфекции у мышей линии B10.M (H2f) и иммунный ответ на антигены микобактерий
https://doi.org/10.21292/2075-1230-2019-97-7-48-55
Abstract
Objective: to identify specific features of the immune response making BCG vaccine ineffective in mice carrying H2f allele of the main complex of tissue compatibility.
Subjects and methods. Inbred lines of B10.M (H2f) and B10 (H2b) mice vaccinated and not vaccinated with BCG and infected with M. tuberculosis H37Rv, were compared in terms of survival after the infection, the number of mycobacteria in the lungs, the ability of T-lymphocytes to recognize mycobacterial antigens and produce interferon-γ (IFN-γ ) in response to mycobacterial antigens and non-specific stimulation of T-receptors.
Results. It was found out that B10.M mice were unable to produce T-cells by the lymphoid organs (spleen) and lungs to produce IFN-γ in response to long-term stimulation of mycobacterial antigens in chronic infection, although the recognition of these antigens, as well as the ability to produce IFN-γ in response to non-specific binding of T-receptors with anti-CD3 antibodies, were completely preserved. It was demonstrated that the defect in IFN-γ production manifested at a late stage of infection regardless of prior BCG vaccination, and hypothesized that it was rather associated with the phenomenon of specific "immunological depletion" of T-cells in mice carrying some allelic variants of H2 complex.About the Authors
M. V. KorotetskаyaRussian Federation
Maria V. Korotetskaya - Acting Senior Researcher of Immunogenetics Laboratory.
2, Yauzskaya Alleya, Moscow, 107564, Phone: +7 (499) 785-90-72
P. G. Bаykuzinа
Russian Federation
Polina G. Baykuzina - Student of the 5th Year at the Biomedical Engineering and Informatics Department, Lomonosov Moscow State University.
2, Yauzskaya Alleya, Moscow, 107564, Phone: +7 (499) 785-90-72
A. S. Аpt
Russian Federation
Aleksandr S. Apt - Head of Immunogenetics Laboratory.
2, Yauzskaya Alleya, Moscow, 107564, Phone: +7 (499) 785-90-72
References
1. Pichugin А.V., Аpt А.S. Cellular apoptosis of the immune system in case of tuberculous infection. Probl. Tub., 2005, no. 12, pp. 3-7. (In Russ.)
2. Adu H.O., Curtis J., & Turk J.L. Role of the major histocompatibility complex in resistance and granuloma formation in response to Mycobacterium lepraemurium infection. Infect. Immun., 1983, vol. 40, no. 2, pp. 720-725.
3. Apt A.S., Avdienko V.G., Nikonenko B.V., Kramnik I.B., Moroz A.M., Skamene E. Distinct H-2 complex control of mortality, and immune responses to tuberculosis infection in virgin and BCG‐vaccinated mice. Clin. Exp. Immunol., 1993, vol. 94, no. 2, pp. 322-329.
4. Brett S., Orrell J.M., Beck J., Ivanyi J. Influence of H-2 genes on growth of Mycobacterium tuberculosis in the lungs of chronically infected mice. Immunol., 1992, vol. 76, no. 1, pp. 129.
5. Cadena A.M., Fortune S.M., Flynn J.L. Heterogeneity in tuberculosis. Nat. Rev. Immunol., 2017, vol. 17, no. 11, pp. 691.
6. Clarke A.J., Simon A.K. Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol., 2018, Dec 7.
7. Fogel N. Tuberculosis: a disease without boundaries. Tuberculosis, 2015, vol. 95, no. 5, pp. 527-531.
8. Hussain R., Shiratsuchi H., Ellner J.J., Wallis R.S. PPD-specific IgG1 antibody subclass upregulate tumour necrosis factor expression in PPD-stimulated monocytes: possible link with disease pathogenesis in tuberculosis. Clin. Exp. Immunol., 2000, vol. 119, no. 3, pp. 449.
9. Khan N., Vidyarthi A., Amir M., Mushtaq K., & Agrewala J.N. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit. Rev. Microbiol., 2017, vol. 43, no. 2, pp. 133-141.
10. Kondratieva E., Logunova N., Majorov K., Averbakh Jr.M., Apt A. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PloS one, 2010, vol. 5, no. 5, pp. e10515.
11. Linge I., Dyatlov A., Kondratieva E., Avdienko V., Apt A., Kondratieva T. B-lymphocytes forming follicle-like structures in the lung tissue of tuberculosis-infected mice: Dynamics, phenotypes and functional activity. Tuberculosis, 2017, vol. 102, pp. 16-23.
12. Lyadova I.V., Eruslanov E.B., Yeremeev, V.V., Majorov K.B., Pichugin A.V., Nikonenko B.V., Khaidukov S.V., Kondratieva T.K., Apt A.S. Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to Mycobacterium tuberculosis-triggered disease. J. Immunol., 2000, vol. 165, no. 10, pp. 5921-5931.
13. Nunes-Alves C., Booty M.G., Carpenter S.M., Jayaraman P., Rothchild A.C., Behar S.M. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol., 2014, vol. 12, no. 4, pp. 289.
14. O’Garra A., Redford P.S., McNab F.W., Bloom C.I., Wilkinson R.J., Berry M.P. The immune response in tuberculosis. Ann. Rev. Immunol., 2013, vol. 31, pp. 475-527.
15. Park C.O., Kupper T.S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nature Med., 2015, vol. 21, no. 7, pp. 688.
16. Pichugin A.V., Petrovskaya S.N., Apt A.S. H2 complex controls CD4/CD8 ratio, recurrent responsiveness to repeated stimulations, and resistance to activation‐induced apoptosis during T cell response to mycobacterial antigens. J. Leukocyte Biol., 2006, vol. 79, no. 4, pp. 739-746.
17. Radaeva T.V., Kondratieva E.V., Sosunov V.V., Majorov K.B., Apt A. A human-like TB in genetically susceptible mice followed by the true dormancy in a Cornell-like model. Tuberculosis, 2008, vol. 88, no. 6, pp. 576-585.
18. Radaeva T.V., Nikonenko B.V., Mischenko V.V., Averbakh Jr M.M., Apt A.S. Direct comparison of low-dose and Cornell-like models of chronic and reactivation tuberculosis in genetically susceptible I/St and resistant B6 mice. Tuberculosis, 2005, vol. 85, no. 1-2, pp. 65-72.
19. Repasy T., Lee J., Marino S., Martinez N., Kirschner D.E., Hendricks G., Kornfeld H. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathogens., 2013, vol. 9, no. 2, pp. e1003190.
20. Roche P.W., Triccas J.A., Winter N. BCG vaccination against tuberculosis: past disappointments and future hopes. Trends Microbiol., 1995, vol. 3, no. 10, pp. 397-401.
21. Seder R.A., Darrah P.A., Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat. Rev. Immunol., 2008, vol. 8, no. 4, pp. 247.
22. Singh S.P.N., Mehra N.K., Dingley H.B., Pande J.N., Vaidya, M.C. Human leukocyte antigen (HLA)-linked control of susceptibility to pulmonary tuberculosis and association with HLA-DR types. J. Infect. Dis., 1983, vol. 148, no. 4, pp. 676-681.
23. Smith C.M., Proulx M.K., Olive A.J., Laddy D., Mishra B.B., Moss C., Gutierrez N.M., Bellerose M.M., Barreira-Silva P., Phuah J.Y., Baker R.E., Behar S.M., Kornfeld H., Evans T.G., Beamer G., Sassetti C.M. Tuberculosis susceptibility and vaccine protection are independently controlled by host genotype. MBio., 2016, vol. 7, no. 5, pp. e01516-16.
24. Ulrichs T., Kosmiadi G.A., Trusov V., Jörg S., Pradl L., Titukhina M., Kaufmann S.H. Human tuberculous granulomas induce peripheral lymphoid follicle‐like structures to orchestrate local host defence in the lung. J. Pathol., 2004, vol. 204, no. 2, pp. 217-228.
25. Yan B.S., Pichugin A.V., Jobe O., Helming L., Eruslanov E.B., Gutiérrez-Pabello J.A., Kramnik I. Progression of pulmonary tuberculosis and efficiency of bacillus Calmette-Guerin vaccination are genetically controlled via a common sst1-mediated mechanism of innate immunity. J. Immunol., 2007, vol. 179, no. 10, pp. 6919-6932.
Review
For citations:
Korotetskаya M.V., Bаykuzinа P.G., Аpt A.S. Неэффективность вакцины BCG для защиты от туберкулезной инфекции у мышей линии B10.M (H2f) и иммунный ответ на антигены микобактерий. Tuberculosis and Lung Diseases. 2019;97(7):48-55. (In Russ.) https://doi.org/10.21292/2075-1230-2019-97-7-48-55