Spoligotyping of tuberculous mycobacteria isolated from humans and cattle
https://doi.org/10.21292/2075-1230-2020-98-3-13-18
Abstract
Objective: to analyze the species and genetic families of tuberculous mycobacteria isolated from humans and cattle by spoligotyping.
Subjects and methods. Biological materials collected in the cattle, livestock farmers (who underwent annual fluorographic examinations) and tuberculosis patients were studied. To identify mycobacteria, the spoligotyping method was used.
Results. The article assesses the variability of sites within direct repeats (spacers), which are used in laboratory diagnostics for spoligotyping of mycobacteria and identification of tuberculosis pathogens. The frequency of combinations of different spacers in the analyzed mycobacteria in the specimens identified as Mycobacterium tuberculosis complex is compared with the spoligotyping profile of known mycobacteria thus establishing their belonging to a specific genetic family The studied isolates were tested by microscopic, bacteriological, and molecular genetic (PCR) methods. Based on the results of spoligotyping, it was found out that they belonged to genetic families of M. tuberculosis of Beijing, LAM, and Haarlem.
Keywords
About the Authors
N. I. KhаmmаdovRussian Federation
Nail I. Khammadov - Leading Researcher of Biochemical and Molecular Genetic Analysis Laboratory.
Nachny Gorodok-2, Kazan, Tatarstan Republic, 420075
T. Kh. Faizov
Russian Federation
Tagir Kh. Faizov - Head of Biochemical and Molecular Genetic Analysis Laboratory.
Nachny Gorodok-2, Kazan, Tatarstan Republic, 420075
K. A. Osyanin
Russian Federation
Konstantin A. Osyanin - Senior Researcher of Biochemical and Molecular Genetic Analysis Laboratory.
Nachny Gorodok-2, Kazan, Tatarstan Republic, 420075
A. V. Khаmmаdovа
Russian Federation
Alfia V. Khammadova - Master's Student of the 2nd Year of Study of Institute of Environmental Sciences.
18, Kremlevskaya St., Kazan, Tatarstan Republic, 420008
K. S. Khаertynov
Russian Federation
Kamil S. Khaertynov - Head of Central Research Laboratory.
36, Butlerova St., Kazan, Tatarstan Republic, 420012
E. A. Shuralev
Russian Federation
Eduard A. Shuralev - Associate Professor of Applied Ecology Department of Sciences of Institute of Environmental Sciences.
18, Kremlevskaya St., Kazan, Tatarstan Republic, 420008
References
1. Gulyukin А.M., Khismatullina N.А., Khaertynov K.S., Shuralev E.А., Аkhmadeev R.M., Naymanov А.Kh., Mukminov M.N., Valeeva А.R. The use of mycobacterial antigens M. bovis BCG-1, M. bovis-8 and M. bovis Valee-88 for enzyme-linked immunosorbent assay of cattle blood serum. Trudy Vserossiyskogo NII Eksperimentalnoy Veterinarii Im. Ya.R. Kovalenko, 2013, vol. 77, pp. 200-203. (In Russ.)
2. Danko Yu.Yu. Tuberculosis diagnosed in a Milan clinic in the cat from Kiev cattery. Ippologiya i Veterinariya, 2016, no. 3 (21), pp. 110-115. (In Russ.)
3. Zavgorodniy А.1., Pozmogova SA., Dzombak D.V., Girka MA. Isolation of M. paratuberculosis from cattle specimens. Veterinarna Meditsina, 2011, no. 95, pp. 103-104. (In Russ.)
4. RF Law no. 4979-1 as of May 14, 1993 On Veterinary Medicine (with amendments as of 27.12.2018). Database of legal, regulatory and technical documentation. AO Kodeks Publ., 2019. (In Russ.) Available: http://docs.cntd.ru/document/9004249
5. Makarova M.V. Non-tuberculous mycobacteria: classification, epidemiology, pathology in humans and animals, laboratory diagnostics. Probl. Tub. i Bolezni Legkikh, 2007, vol. 84, no. 10, pp. 7-17. (In Russ.)
6. Pavlova I.B., Bannikova DA. Environmental aspects of the existence and development of mycobacterial populations. Veterinarnaya Patologiya, 2004, no. 1-2, pp. 65-68. (In Russ.)
7. Prokopieva N.I., Protodyakonova G.P., Pavlov N.G., Oboeva NA.. Non-tuberculous (atypical) mycobacteria isolated from animals and humans. Agrarny Vestnik Urala, 2011, vol. 84, no. 5, pp. 29-30. (In Russ.)
8. Romanenko V.F. Epizootological and epidemiological features of tuberculous mycobacteria. Veterinariya, 2013, no. 7, pp. 23-28. (In Russ.)
9. Sanitary Epidemiological Rules SP 3.1.2.3114-13 (with amendments as of 06.02.2015). Database of legal, regulatory and technical documentation. AO Kodeks Publ., 2019. (In Russ.) Available: http://docs.cntd.ru/document/499056594.
10. Starkova DA. Mycobacterium avium is a topical causative agent of human mycobacteriosis. Infektsiya I Immunitet, 2013, vol. 3, no. 1, pp. 7-14. (In Russ.)
11. Khammadov N.I. Izuchenie effektivnosti razlichnykh molekulyarno-geneticheskikh metodov identifikatsii i differentsiatsii vozbuditeley tuberkuleza i atipichnykh mikobakteriy. Avtoref. diss. kand. biol. nauk. [The study of the effectiveness of various molecular genetic methods for the identification and differentiation of pathogens of tuberculosis and atypical mycobacteria. Synopsis of Cand. Diss.]. Kazan, 2010, 23 p.
12. Kamerbeek J., Schouls L., Kolk A., van Agterveld M., van Soolingen D., Kuijper S., Bunschoten A., Molhuizen H., Shaw R., Goyal M., van Embden J. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol., 1997, vol. 35, no. 4, pp. 907-914.
13. Moravkova M., Slany M., Trcka I., Havelkova M., Svobodova J., Skoric M., Heinigeova B., Pavlik I. Human-to-human and human-to-dog Mycobacterium tuberculosis transmission studied by IS6110 RFLP analysis: a case report. Veterinarni Medicina, 2011, vol. 56, no. 6, pp. 314-317.
14. Muwonge A., Johansen T. B., Vigdis E., Godfroid J., Olea-Popelka F., Biffa D., Skjerve E., Djonne B. Mycobacterium bovis infections in slaughter pigs in Mubende district, Uganda: a public health concern. BMC Veterinary Research, 2012, no. 8, pp. 168, doi: 10.1186/1746-6148-8-168.
15. Tirkkonen T., Nieminen T., Ali-Vehmas T., Peltoniemi O.A.T., Wellenberg G.J., Pakarinen J. Quantification of Mycobacterium avium subspecies in pig tissues by real-time quantitative PCR. Acta. Vet. Scand., 2013, no. 55, pp. 26, doi: 10.1186/1751-0147-55-26.
16. Vitol I., Driscoll J., Kreiswirth B., Kurepina N., Bennett K.P Identifying Mycobacterium tuberculosis complex strain families using spoligotypes. Infect. Genet. Evol., 2006, vol. 6, no. 6, pp. 491-504. doi: 10.1016/j.meegid.2006.03.003.
17. Zhang J., Abadia E., Refregier G., Tafaj S., Boschiroli M.L., Guillard B., Andremont A., Ruimy R., Sola C. Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of 'spoligotyping' with new spacers and a microbead-based hybridization assay. J. Med. Microbiol., 2010, vol. 59, Pt. 3, pp. 285-294. doi: 10.1099/jmm.0.016949-0.
Review
For citations:
Khаmmаdov N.I., Faizov T.Kh., Osyanin K.A., Khаmmаdovа A.V., Khаertynov K.S., Shuralev E.A. Spoligotyping of tuberculous mycobacteria isolated from humans and cattle. Tuberculosis and Lung Diseases. 2020;98(3):13-18. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-3-13-18