Новая модель дормантности Mycobacterium tuberculosis in vitro


https://doi.org/10.21292/2075-1230-2020-98-3-19-26

Полный текст:


Аннотация

В статье представлена новая invitro модель дормантности M. tuberculosis, основанная на культивировании в условиях депривации четырех компонентов стандартной питательной среды Middlebrook 7H9. Детально описаны способ моделирования, характеристики полученного дормантного фенотипа M. tuberculosis, предложены области потенциального применения модели.


Об авторах

Я. Р. Батыршина
ФГБУ «Новосибирский НИИ туберкулеза» МЗ РФ
Россия

Батыршина Яна Рэмовна - врач-бактериолог.

630040, Новосибирск, ул. Охотская, д. 81а, Тел./факс: + 7 (383)203-83-62, +7 (383)203-78-25



Я. Ш. Шварц
ФГБУ «Новосибирский НИИ туберкулеза» МЗ РФ
Россия

Шварц Яков Шмульевич - заместитель директора по науке.

630040, Новосибирск, ул. Охотская, д. 81а, Тел./факс: +7 (383) 203-83-58, +7 (383) 203-78-25



Список литературы

1. Шлегель Г. Общая микробиология. - М.: Мир, 1987. - 567 с.

2. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling // Molecular Microbiology. - 2002. -Vol. 43. - Р 717-731.

3. Deb C., Lee C. M., Dubey V S., Daniel J., Abomoelak B., Sirakova T. D., Pawar S. , Rogers L., Kolattukudy P. E. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen // PLoS ONE. - 2009. - Vol. 4, № 6. - Р e6077.

4. Ehlers S. Lazy, dynamic or minimally recrudescent? On the elusive nature and location of the mycobacterium responsible for latent tuberculosis // Infection. - 2009. - Vol. 37, № 2. - Vol. 37. - Р 87-95.

5. Gengenbacher M., Kaufmann S. H. E. Mycobacterium tuberculosis: Success through dormancy // FEMS Microbiology Reviews. - 2012. - Vol. 36, № 3. -Р. 514-532.

6. Gengenbacher M., Rao S. P. S., Pethe K., Dick T. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability // Microbiology. -2010. - Vol. 156. - Р 81-87.

7. Goodsmith N., Guo X. V., Vandal O. H., Vaubourgeix J., Wang R., Botella H., Song S., Bhatt K., Liba A., Salgame P., Schnappinger D., Ehrt S. Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice // PLOS Pathogens. - 2015. - Vol. 11, № 2. - Р 1-23.

8. Hampshire T., Soneji S., Bacon J., James B. W, Hinds J., Laing K., Stabler R. A., Marsh P. D., Butcher P. D. Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: A model for persistent organisms? // Tuberculosis. - 2004. - Vol. 84. - Р. 228-238.

9. Kaprelyants A. S., Gottschal J. C., Kell D. B. Dormancy in non-sporulating bacteria // FEMS Microbiology Reviews. - 1993. - Vol. 10, № 3-4. - Р 271-285.

10. Keren I., Minami S., Rubin E., Lewis K. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters // mBio, 2011. - Vol. 2, № 3. -Р e00100-e00111.

11. Kurthkoti K., Amin H., Marakalala M. J., Ghanny S., Subbian S., Sakatos A., Livny J., Fortune S. M., Berney M., Rodriguez G. M. The capacity of Mycobacterium tuberculosis to survive iron starvation might enable it to persist in iron-deprived microenvironments of human granulomas // mBio. - Vol. 8, № 4. - Р. 1-17.

12. Lakshminarayana S. B., Huat T. B., Ho P. C., Manjunatha U. H., Dartois V, Dick T. , Srinivasa R. P. S. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents // J. Antimicrob. Chemotherapy. - 2015. -Vol. 70. - Р. 857-867.

13. Loebel R. O., Shorr E., Richardson H. B. The Influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli // J. Bacteriology. - 1933. - Vol. 26, № 2. - Р 167-200.

14. Rifat D., Bishai W. R., Karakousis P. C. Phosphate Depletion: A Novel Trigger for Mycobacterium tuberculosis Persistence // J. Infect. Dis. - 2009. - Vol. 200. -Р. 1126-1135.

15. Rittershaus E.S.C., Baek S.H., Sassetti C.M. The normalcy of dormancy: common themes in microbial quiescence. Cell Host and Microbe, 2013, vol. 13, issue 6, pp. 643-651.

16. Rodriguez J.G., Hernandez A.C., Helguera-Repetto C., Aguilar Ayala D., Guadarrama-Medina R., Anzóla J.M., Bustos J.R., Zambrano M.M., Gonzalez-y-Merchand J., Garcia M.J., Portilloa P.D. Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis. mBio, 2014, vol. 5, no. 3, pp. e01125- e01114.

17. Salina E.G., Waddell S.J., Hoffmann N., Rosenkrands I., Butcher P.D., Kaprelyants A.S. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biology, 2014, vol. 4, no. 10, pp. 140106-140106.

18. Shiloh M.U., Manzanillo P., Cox J.S. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host and Microbe, 2008, vol. 3, no. 5, pp. 323-330.

19. Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. Dormant ovoid cells of Mycobacterium tuberculosis are formed in response to gradual external acidification. Tuberculosis, 2011, vol. 91, pp. 146-154.

20. Siddiqi S.H., Rusch-Gerdes S. Operation guidelines for Bactec MGIT 960. FIND, 2006.

21. Taneja N.K., Dhingra S., Mittal A., Naresh M., Tyagi J.S. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS One, 2010, vol. 5, no. 5, pp. 18-24.

22. Veatch A.V., Kaushal D. Opening Pandora’s Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends in Microbiology, 2018, vol. 26, no. 2, pp. 145-157.

23. Voskuil M.I., Schnappinger D., Visconti K.C., Harrell M.I., Dolganov G.M., Sherman D.R., Schoolnik G.K. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Experim. Med., 2003, vol. 198, pp. 705-713.

24. Ward S.K., Hoye E.A., Talaat A.M. The Global responses of Mycobacterium tuberculosis to physiological levels of copper. J. Bacteriology, 2008, 190, pp. 2939-2946.

25. Wayne L.G., Hayes L.G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infection and Immunity, 1996, vol. 64, pp. 2062-2069.


Дополнительные файлы

Для цитирования: Батыршина Я.Р., Шварц Я.Ш. Новая модель дормантности Mycobacterium tuberculosis in vitro. Туберкулез и болезни легких. 2020;98(3):19-26. https://doi.org/10.21292/2075-1230-2020-98-3-19-26

For citation: Bаtyrshinа Y.R., Shvarts Y.S. A new in vitro dormancy model of Mycobacterium tuberculosis. Tuberculosis and Lung Diseases. 2020;98(3):19-26. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-3-19-26

Просмотров: 79

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)