Preview

Tuberculosis and Lung Diseases

Advanced search

Reparation of lung tissue in newly detected pulmonary tuberculosis as genetically determined process

https://doi.org/10.21292/2075-1230-2020-98-8-7-13

Abstract

The objective of the study is to assess the effect of rs6707530 polymorphism of the FN1 gene and rs1150754 polymorphism of the TNXB gene on the healing of lung tissue destruction in patients with newly detected pulmonary tuberculosis.

Subjects and methods. 82 patients older 18 years with newly diagnosed pulmonary tuberculosis with destruction were enrolled in the study. X-ray data were assessed on the 2nd, 4th and 6th months of the study. Patients were divided into 2 groups depending on the efficacy of chemotherapy intensive phase.

Results. In the group of patients with an effective course of chemotherapy, the frequency of carriers of G allele (p < 0.001) and T/G genotype (p = 0.01) in rs6707530 locus of the FN1 gene was higher. While T/T genotype (p = 0.002) and T allele (p < 0.001) prevailed among the patients with persisting destruction of lung tissue after the intensive phase of chemotherapy.

About the Authors

K. Yu. Samsonov
Omsk State Medical University
Russian Federation

Kirill Yu. Samsonov, Full-time Postgraduate Student of Department of Phthisiology, Phthisiosurgery and infectious Diseases

12, Lenina St., Omsk, 644099

Phone: +7 (3812) 95-68-24.



A. V. Mordyk
Omsk State Medical University
Russian Federation

Anna V. Mordyk, Doctor of Medical Sciences, Professor, Head of Phthisiology, Phthisiosurgery and Infectious Diseases Department

12, Lenina St., Omsk, 644099

Phone: +7 (3812) 95-68-24.



A. R. Аroyan
Clinical TB Dispensary
Russian Federation

Anna R. Аroyan, Head of Pulmonary Tuberculosis Department no. 1

2, Tselinnaya St., Omsk, Omsk Region, 644058

Phone: +7 (3812) 42-22-15



T. L. Batischeva
Clinical TB Dispensary
Russian Federation

Tatiana L. Batischeva, Candidate of Medical Sciences, Deputy Chief Physician for Medical Activities

2, Tselinnaya St., Omsk, Omsk Region, 644058

Phone: +7 (3812) 42-22-15



O. G. Ivanova
Omsk State Medical University
Russian Federation

Olga G. Ivanova, Candidate of Medical Sciences, Associate Professor of Phthisiology, Phthisiosurgery and Infectious Diseases Department

12, Lenina St., Omsk, 644099

Phone: +7 (3812) 95-68-24



References

1. Аndryukov B.G., Somova L.M., Drobot E.I., Matosova E.V. Protective strategies of neutrophilic granulocytes from pathogenic bacteria. Zdorovye.Meditsinskaya Ekologiya.Nauka, 2017, no. 1 (68), pp. 4-18. (In Russ.)

2. Gurova Ya.V., Mordyk А.V., Gurova I.S. Molecular genetic tests in the patients with a various course of tuberculosis. Tuberculosis and Lung Diseases, 2019, vol. 97, no. 6, pp. 52-53. (In Russ.)

3. Korotkina O.L., Generalov I.I. Neutrophil extracellular traps: mechanisms of formation, functions. Immunopatologiya, Allergologiya, Infektologiya, 2012, no. 4, pp. 23-32. (In Russ.)

4. Kofiadi I.А., Rebrikov D.V. Methods of detection of single-nucleotide polymorphisms: allele-specific PCR and hybridization with oligonucleotide test. Genetika, 2006, vol. 42, no. 1, pp. 22-32. (In Russ.)

5. Mordyk А.V., Ivanova O.G., Nagibina L.А., Sitnikova S.V., Sagalbaeva G.Zh. Use of immune restorative agents in the integral treatment of destructive infiltrate tuberculosis. Tuberculosis and Lung Diseases, 2015, no. 10, pp. 69-75. (In Russ.)

6. Mordyk А.V., Puzyreva L.V., Batischeva T.L. Assessment of factors influencing the outcome of new infiltrative pulmonary tuberculosis. Terapevticheskiy Arkhiv, 2015, vol. 87, no. 11, pp. 46-50. (In Russ.)

7. Sheyfer Yu.A. The method for predicting cavity healing in patients with destructive forms of pulmonary tuberculosis during chemotherapy. Vestnik Grodnenskogo Gosudarstvennogo Meditsinskogo Universiteta, 2016, no. 4 (56), pp. 100-105. (In Russ.)

8. Yarmolinskaya M.I., Molotkov А.S., Denisova V.M. Matrix metalproteinase and inhibitors: classification, mechanism of action. Journal Akusherstva i Zhenskikh Bolezney, 2012, no. 61, pp. 113-125. (In Russ.)

9. Andrade B. B. et al. Heme oxygenase-1 regulation of matrix metalloproteinase-1 expression underlies distinct disease profiles in tuberculosis // J. Immunology. – 2015. – Vol. 195, № 6. – P. 2763-2773. doi:10.4049/jimmunol.1500942.

10. Belton M. et al. Hypoxia and tissue destruction in pulmonary TB // Thorax. – 2016. – Vol. 71, № 12. – P. 1145-1153. doi:10.1136/thoraxjnl-2015-207402.

11. Brace P. T. et al. Mycobacterium tuberculosis subverts negative regulatory pathways in human macrophages to drive immunopathology // PLoS Pathogens. – 2017. – Vol. 13, № 6. ‒ Р. e1006367. doi:10.1371/journal.ppat.1006367.

12. Brilha S. et al. Early secretory antigenic target-6 drives matrix metalloproteinase-10 gene expression and secretion in tuberculosis // Am. J. Respir. Cell Molec. Biology. – 2017. – Vol. 56, № 2. – P. 223-232. doi:10.1165/rcmb.2016-0162OC.

13. Brinkmann V. et al. Automatic quantification of in vitro NET formation // Front. Immunol. – 2013. – Vol. 3. ‒ Р. 413. doi:10.3389/fimmu.2012.00413.

14. de Melo Mayla Gabryele Miranda et al. Imbalance of NET and alpha-1- antitrypsin in tuberculosis patients is related with hyper inflammation and severe lung tissue damage // Frontiers in Immunology. – 2019. – Vol. 9. 3147. doi:10.3389/fimmu.2018.03147.

15. Dorhoi A., Kaufmann S. H. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis // Semin Immunopathol. ‒ 2016. ‒ Vol. 38, № 2. ‒ Р. 153-166. doi: 10.1007/s00281-015-0531-3.

16. Kida H. et al. A single nucleotide polymorphism in fibronectin 1 determines tumor shape in colorectal cance // Oncol. Reports. – 2014. – Vol. 32. – P. 548-552. doi: 10.1074/jbc.RA118.005707.

17. Monin L., Khader S. A. Chemokines in tuberculosis: the good, the bad and the ugly // Seminars in Immunology. – 2014. – Vol. 26.6. – P. 552-558. doi:10.1016/j.smim.2014.09.004.

18. Moores R. C. et al. Epigenetic regulation of matrix metalloproteinase-1 and -3 expression in Mycobacterium tuberculosis infection // Frontiers in Immunology. – 2017. – Vol. 8. ‒ Р. 602. doi:10.3389/fimmu.2017.00602.

19. Ong C. W. M. et al. Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis // Scientific Reports. – 2018. – Vol. 8, № 1. ‒ Р. 11475. doi:10.1038/s41598-018-29659-1.

20. Ong C. W. M. et al. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis // PLoS Pathogens. – 2015. – Vol. 11, № 5. ‒ Р. e1004917. doi:10.1371/journal.ppat.1004917.

21. Ong C. W. M. et al. Tuberculosis, pulmonary cavitation, and matrix metalloproteinases // Am. J. Respir. Crit. Care Med. – 2014. – Vol. 190. – P. 9-18. doi:10.1164/rccm.201311-2106PP.

22. Оrto B. N., Stein R. T. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? // Frontiers in Immunology. – 2016. – Vol. 7. ‒ Р. 311. doi:10.3389/fimmu.2016.00311.

23. Shivani S. et al. Antimycobacterial drugs modulate immunopathogenic matrix metalloproteinases in a cellular model of pulmonary tuberculosis // Antimicrob. Agents Chemother. – 2014. – Vol. 58, № 8. – P. 4657-4665. doi:10.1128/AAC.02141-13.

24. Skonieczna K. et al. Genetic similarities and differences between discoid and systemic lupus erythematosus patients within the Polish population // Postepy Dermatol. Alergol. – 2017. – Vol. 34, № 3. – P. 228-232. doi:10.5114/pdia.2017.67479.

25. Squeglia F. et al. Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest // Biochemical J. – 2019. – Vol. 475, № 19. – P. 3123-3140. doi: 10.1042/BCJ20180482.


Review

For citations:


Samsonov K.Yu., Mordyk A.V., Аroyan A.R., Batischeva T.L., Ivanova O.G. Reparation of lung tissue in newly detected pulmonary tuberculosis as genetically determined process. Tuberculosis and Lung Diseases. 2020;98(8):7-13. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-8-7-13

Views: 1682


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)