Bronchoscopic biopsies with radial endobronchial ultrasonographic navigation in the diagnosis of tuberculosis and mycobacteriosis in patients with peripheral lung masses
https://doi.org/10.21292/2075-1230-2021-99-5-25-34
Abstract
The objective of the study: to evaluate the effectiveness of diagnosis of tuberculosis and mycobacteriosis in bronchobiopsy specimens obtained during navigation by radial endobronchial ultrasonography (rEBUS) in patients with peripheral lung lesions without bacterial excretion.
Subjects and methods. A retrospective analysis of the diagnostic effectiveness of bronchoscopic examination with biopsies was carried out in 179 patients (75 men and 104 women) suffering from pulmonary tuberculosis or mycobacteriosis without bacterial excretion; peripheral lung lesions had been visualized by computed tomography (CT). The patients were divided into two groups: 93 underwent bronchoscopy with biopsies with rEBUS navigation, 86 underwent bronchoscopy with classical biopsies and preliminary CT navigation. Each patient underwent multiple biopsies, at least one fluid biopsy (bronchoalveolar lavage or bronchial lavage), and one tissue biopsy (transbronchial lung biopsy or brush biopsy). Specimens collected by all types of bronchobiopsy were sent for microbiological and cytological tests, specimens of pulmonary transbronchial biopsy were additionally sent for histological examination.
Results. The diagnosis of tuberculosis was verified by bronchobiopsy in 106 (67.5%) of 158 patients with tuberculosis, but statistically significantly more often in the group with rEBUS navigation versus the group without it – 81.9% (68/83) versus 50.7% (38/75), respectively (pχ2 < 0.01). The diagnosis of non-tuberculous mycobacteriosis was verified by bronchobiopsy in 13 (61.9%) of 21 patients, in the group with rEBUS navigation – in 80.0% (8/10) patients, in the group without it – in 45.5% (5/11) (pφ > 0.05). The use of rEBUS navigation while collecting bronchobiopsy specimens made it possible to increase the etiological verification of tuberculosis using the following microbiological methods: microscopy – from 14.7 to 49.4% (pχ2 < 0.01), molecular genetic – from 41.3 to 72.3% ( pχ2 < 0.01), culture (Bactec MGIT960) – from 44.0 to 67.5% (pχ2 < 0.01) The greatest enhancement of diagnostic effectiveness was achieved in the specimens of bronchoalveolar lavage and bronchial lavage – from 33.3 to 71.1% (pχ2 < 0.01) and in brush biopsy specimens – from 25.6 to 57.6% (pχ2 < 0.01).
About the Authors
I. Yu. ShabalinaRussian Federation
Irina Yu. Shabalina, Candidate of Medical Sciences, Senior Researcher at Center for Respiratory Diseases Diagnostics and Rehabilitation, Endoscopist
2, Yauzskaya Alleya, Moscow, 107564
A. S. Zaytseva
Russian Federation
Anna S. Zaytseva, Candidate of Medical Sciences, Head of the 4th Therapeutic
Unit of the Department for Differential Diagnosis of Pulmonary Tuberculosis and Extracorporeal Methods of Treatment, Pulmonologist
2, Yauzskaya Alleya, Moscow, 107564
A. I. Popova
Russian Federation
Anna I. Popova, Head of the Clinical Diagnostic Laboratory of Center for Respiratory Diseases Diagnostics and Rehabilitation
2, Yauzskaya Alleya, Moscow, 107564
E. E. Larionova
Russian Federation
Elena E. Larionova, Candidate of Biological Sciences, Senior Researcher of Microbiological Department
2, Yauzskaya Alleya, Moscow, 107564
O. V. Lovacheva
Russian Federation
Olga V. Lovacheva, Doctor of Medical Sciences, Professor, Chief Researcher of Department for Differential Diagnostics and Treatment of Tuberculosis and Concurrent Infections
Moscow
A. E. Ergeshov
Russian Federation
Atadzhan E. Ergeshov, Doctor of Medical Sciences, Professor, Director
2, Yauzskaya Alleya, Moscow, 107564
References
1. Vladimirova E.B., Shmelev E.I., Zaytseva А.S. et al. Non-tuberculous pulmonary mycobacteriosis - diagnostic possibilities in the practice of a pulmonologist. Terapevticheskiy Arkhiv, 2019, vol. 91, no. 11, pp. 31-36. (In Russ.) doi:10.26442/00403660.2019.11.000306.
2. Gombolevskiy V.А., Chernina V.Yu., Blokhin I.А., Nikolaev А.E., Barchuk А.А., Morozov S.P. Main achievements of low-dose computed tomography in lung cancer screening Tuberculosis and Lung Diseases, 2021, vol. 99, no. 1, pp. 61-70. (In Russ.) http://doi.org/10.21292/2075-1230-2021-99-1-61-70.
3. Mamaev А.N., Kudlay D.А. Statisticheskiye metody v meditsine. [Statistical methods in medicine]. Moscow, Prakticheskaya Meditsina Publ., 2021, 136 p. ISBN 978-5-98811-635-6.
4. Nechaeva O.B. Socially important infectious diseases posing a biological threat to the population of Russia. Tuberculosis and Lung Diseases, 2019, vol. 97, no. 11, pp. 7-18. (In Russ.) doi: 10.21292/2075-1230-2019-97-11-7-17.
5. Smirnova T.G., Аndreevskaya S.N., Larionova E.E., Аndrievskaya I.Yu., Ustinova V.V., Chernousova L.N. Monitoring of species diversity of non-tuberculosis mycobacteria in some Russian regions using DNA-strips of GenoType Mycobacterium CM/AS (HAIN LIFESCIENCE, Germany). Tuberculosis and Lung Diseases, 2017, vol. 95, no. 5, pp. 54-59. (In Russ.)
6. Tuberkulez u vzroslykh. Klinicheskiye rekomendatsii. [Tuberculosis in adults. Guidelines]. Vasilyeva I.А., Balasanyants G.S., Borisov S.E., Burmistrova I.А., Valiev R.Sh., Vaniev E.V., Vakhrusheva D.V., Veselova E.I., Voronin E.E., Zimina V.N., Ivanova D.А., Kazimirova N.E., Kaminskiy G.D., Kornienko S.V., Krasnov V.А., Kulchavenya E.V., Lovacheva O.V., Maryandyshev А.O., Mordyk А.V., Morozova T.I. et al., eds. 2020, Moscow, 121p. https://www.elibrary.ru/item.asp?id=42593525.
7. Atkins N. K., Marjara J., Kaifi J. T., Kunin J. R., Saboo S. S., Davis R. M., Bhat A. P. Role of computed tomography-guided biopsies in the era of electromagnetic navigational bronchoscopy: a retrospective study of factors predicting diagnostic yield in electromagnetic navigational bronchoscopy and computed tomography biopsies // J. Clin. Imaging Sci. ‒ 2020. ‒ № 10. ‒ Р. 33. doi: 10.25259/JCIS_53_2020.
8. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults. Du Rand I. A. et al. // Thorax. ‒ 2013. ‒ № 68. ‒ Р. i1-i44. http://dx.doi.org/10.1136/thoraxjnl-2013-203618.
9. Chan A., Devanand A., Low S. Y., Koh M. S. Radial endobronchial ultrasound in diagnosing peripheral lung lesions in a high tuberculosis setting // BMC Pulm Med. ‒ 2015. ‒ № 15. ‒ Р. 90.
10. Chung Y. H., Lie C. H., Chao T. Y. et al. Endobronchial ultrasonography with distance for peripheral pulmonary lesions // Respir. Med. ‒ 2007. ‒ № 101. ‒ Р. 738-745. 10.1016/j.rmed.2006.08.014.
11. Daley C. L., Jonathan M. et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline: executive summary // Clin. Infect. Dis. ‒ 2020. ‒ Vol. 71, № 4. ‒ Р. e1-e36. DOI: 10.1093/cid/ ciaa241.
12. Gu Y., Wu C., Yu F. et al. Application of endobronchial ultrasonography using a guide sheath and electromagnetic navigation bronchoscopy in the diagnosis of atypical bacteriologically-negative pulmonary tuberculosis // Ann. Transl. Med. ‒ 2019. ‒ Vol. 7, № 20. ‒ Р. 567. doi: 10.21037/atm.2019.09.37. doi: 10.1186/s12880-015-0060-5.
13. Herth F. J., Ernst A., Becker H. D. Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary nodules and peripheral lesions // Eur. Respir. J. ‒ 2002. ‒ № 20. ‒ P. 972-974.
14. Kuo C. H., Lin S. M., Lee K. Y. et al. Endobronchial ultrasound-guided transbronchial biopsy and brushing: a comparative evaluation for the diagnosis of peripheral pulmonary lesions // Eur. J. Cardiothorac. Surg. ‒ 2014. ‒ № 45. ‒ Р. 894-898. 10.1093/ejcts/ezt472.
15. Kurimoto N., Miyazawa T., Okimasa S., Maeda A., Oiwa H., Miyazu Y. et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically // Chest. ‒ 2004. ‒ № 126. ‒ P. 959-965. doi: 10.1378/chest.126.3.959.
16. Lai R. S., Lee S. S., Ting Y. M., Wang H. C., Lin C. C., Lu J. Y. Diagnostic value of transbronchial lung biopsy under fluoroscopic guidance in solitary pulmonary nodule in an endemic area of tuberculosis // Respir. Med. ‒ 1996. ‒ Vol. 90, № 3. ‒ Р. 139-143.
17. Lin S. M. et al. Diagnostic value of endobronchial ultrasonography for pulmonary tuberculosis // J. Thorac. Cardiovasc. Surg. ‒ 2009. ‒ Vol. 138, № 1. ‒ Р. 179-184. doi: 10.1016/j.jtcvs.2009.04.004.
18. Lin S. M., Ni Y. L., Kuo C. H., Lin T. Y., Wang T. Y., Chung F. T., Kuo H. P. Endobronchial ultrasound increases the diagnostic yields of polymerase chain reaction and smear for pulmonary tuberculosis // J. Thorac. Cardiovasc. Surg. ‒ 2010. ‒ Vol. 139, № 6. ‒ Р. 1554-1560.
19. Minezawa Т. et al. Bronchus sign on thin-section computed tomography is a powerful predictive factor for successful transbronchial biopsy using endobronchial ultrasound with a guide sheath for small peripheral lung lesions: a retrospective observational study // BMC Med. Imaging. ‒ 2015. ‒ № 15. ‒ Р. 21. doi: 10.1186/s12880-015-0060-5.
20. Mondoni M., Repossi A., Carlucci P., Centanni S., Sotgiu G. Bronchoscopic techniques in the management of patients with tuberculosis // Int. J. Infect. Dis. ‒ 2017. ‒ Vol. 64. ‒ Р. 27-37. doi: 10.1016/j.ijid.2017.08.008.
21. Moon S. M., Choe J., Jeong B. H., Um S. W., Kim H., Kwon O. J., Lee K. Diagnostic performance of radial probe endobronchial ultrasound without a guide-sheath and the feasibility of molecular analysis // Tuberc. Respir. Dis. (Seoul). ‒ 2019. ‒ Vol. 82, № 4. ‒ Р. 319-327. doi: 10.4046/trd.2018.0082.
22. Yeonseok C., Byung W. J., Jhingook К., Hee J. H., Nam Y. L. Characteristics and outcomes of surgically resected solitary pulmonary nodules due to nontuberculous mycobacterial infections // J. Clin. Med. ‒ 2019. ‒ Vol. 8, № 11. ‒ Р. 1898. DOI:10.1183/13993003.congress-2019.PA2925.
Review
For citations:
Shabalina I.Yu., Zaytseva A.S., Popova A.I., Larionova E.E., Lovacheva O.V., Ergeshov A.E. Bronchoscopic biopsies with radial endobronchial ultrasonographic navigation in the diagnosis of tuberculosis and mycobacteriosis in patients with peripheral lung masses. Tuberculosis and Lung Diseases. 2021;99(5):25-34. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-5-25-34