Preview

Tuberculosis and Lung Diseases

Advanced search

Biotransformation enzymes for xenobiotics and personalization of treatment regimens for tuberculosis patients

https://doi.org/10.21292/2075-1230-2016-94-4-6-12

Abstract

The article presents the analysis of the literature on specific metabolism of anti-tuberculosis drugs depending on polymorphism of genes controlling synthesis and action of biotransformation enzymes, in particular cytochrome P-450 isozymes and enzymes of the IInd phase of biotransformation (N-acetyltransferase, glutathione S-transferase) respective adverse reactions development, first of  all hepatotoxic ones. The  possibility of pharmacogenetic studies with the evaluation of genetic predisposition to developing adverse reactions to medications has been discussed in respect of personalized approach to effective and safe treatment of tuberculosis patients.

About the Authors

G. N. Mozhokina
Research Institute of Phthiopulmonology by I. M. Sechenov First Moscow State Medical University
Russian Federation

Doctor of Medical Sciences, Head of Laboratory Testing and Diagnostics Department,

4, Dostoevsky St., Moscow, 127994



A. V. Kazakov
Research Institute of Phthiopulmonology by I. M. Sechenov First Moscow State Medical University
Russian Federation

Candidate of Medical Sciences, Doctoral Student,

4, Dostoevsky St., Moscow, 127994



N. A. Elistratova
Research Institute of Phthiopulmonology by I. M. Sechenov First Moscow State Medical University
Russian Federation

Senior Researcher,

4, Dostoevsky St., Moscow, 127994



S. A. Popov
Research Institute of Phthiopulmonology by I. M. Sechenov First Moscow State Medical University
Russian Federation

Candidate of Medical Sciences, Head of Microbiological Laboratory,

4, Dostoevsky St., Moscow, 127994



References

1. Bragina E.Yu. Sravnitel’ny analiz struktury nasledstvennoy komponenty podverzhennosti k bronkhialnoy astme i tuberkulezu po genam fermentov metabolizma ksenobiotikov. Diss. kand. biol. nauk. [Comparative analysis of genetic predisposition structure to asthma and tuberculosis as per enzyme genes of xenobiotics metabolism. Cand. Diss.]. Tomsk, 2005.

2. Voznenko A.A. Lekarstvennoindutsirovannye porazheniya pecheni u bol’nykh tuberkulezom organov dykhaniya i puti ikh preodoleniya. Diss. kand. med. nauk. [Drug-induced liver lesions in respiratory tuberculosis patients and ways of their management. Cand. Diss.]. Moscow, 2012, 24 p.

3. Kudryashov А.V., Vavilin V.А., Kolpakova T.А. et al. Relations of CYP2E1 polymorphism with increase of AlAT activity when treating pulmonary tuberculosis patients. Byulleten’ Eksperimentalnoy Biologii i Meditsiny, 2011, vol. 151, no. 6, pp. 689-694. (In Russ.)

4. Kukes V.G., Sychev D.А., Ramenskaya G.V. et al. Pharmacogenetics of biotransformation and drug transporters system: from theory to practice. Biomeditsina, 2007, no. 6, pp. 29-47. (In Russ.)

5. Makarova S.I. Polimorfizm arilamin N-atsetiltransferazy i ego svyaz s nekotorymi rasprostranennymi zabolevaniyami. Diss. kand. biol. nauk. [Polymorphism of arylamin N-acetyltransferase and its relation with certain frequent diseases. Cand. Diss.]. Tomsk, 2000.

6. Makarova S.I. Rol’ polimorfizma genov fermentov biotransformatsii ksenobiotikov v predraspolozhennosti k atopicheskim zabolevaniyam i gepatotoksichnosti k protivotuberkuleznym preparatam. Diss. dokt. med. nauk. [Role of genetic polymorphism of xenobiotics biotransformation enzymes in predisposition to atopic diseases and hepatotoxic reactions to anti-tuberculosis drugs. Doct. Diss.]. Ufa, 2011.

7. Mutaykhan J. Perenosimost protivotuberkuleznykh preratov i individualnye kharakteristiki ikh metabolisma u bolnykh tuberkulezom legkikh s latentno protekayuschimi khronicheskimi virusnymi gepatitami i zabolevaniyami pischevaritelnogo trakta. Diss. kand. med. nauk. [Tolerance of TB drugs and individual parameters of their metabolism in pulmonary tuberculosis patients with latent hepatitis viruses and digestive system disorders. Cand. Diss.]. Novosibirsk, 2007.

8. Perelman M.I., Bogadelnikova I.V. Standard and  personalized medicine in diagnostics and treatment of patients. Tub., 2013, no. 1, pp. 3-9. (In Russ.)

9. Sokolova G.B. Individualizirovannaya khimioterapiya tuberkuleza legkikh (eksperimentalno-klinicheskoe issledovanie). Diss. dokt. med. nauk. [Personalized chemotherapy of pulmonary tuberculosis (experimental clinical study). Doct. Diss.]. Moscow, 2000.

10. Sukhanov D.S. Lekarstvennye porazheniya pecheni u bol’nykh tuberkulezom legkikh i gepatoprotektivnaya terapiya. Diss. kand. med. nauk. [Drug-induced liver lesion in pulmonary tuberculosis patients and hepato-protective therapy. Cand. Diss.]. St. Petersburg, 2008.

11. Sychev D.А., Suleymanov S.Sh., Kukes V.G. Personalized medicine as a way to rational use of medications: background, reality, problems and prospectives of the Russian health care system. Zdravookhraneniye Dalnego Vostoka, 2010, no. 1, pp. 2-7. (In Russ.)

12. Cho H.J., Koh W.J., Ryu Y.J. et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis, 2007, vol. 87, pp. 551-556.

13. Ellard G.A., Gammon P.T. Pharmacokinetics of isoniazid metabolism in man. J. Pharmacokinet. Biopharmaceut., 1976, vol. 4, pp. 83-113.

14. Fukino K., Sasaki Y., Hirai S. et al. Effects of NAT2, CYP2E1 and GST genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. J. Toxicological Sci., 2008, vol. 33, pp. 187-195.

15. Guengerich F.P. Cytochrome P450: what have we learned and what are the future issues? Drug. Metab. Rev., 2004, vol. 36, no. 2, pp. 159-197.

16. Huang Y.S., Chern H.D., Su W.J. et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology, 2002, vol. 35, pp. 883-889.

17. Huang Y.S., Chern H.D., Su W.J. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology, 2003, vol. 37, no. 4, pp. 924-930.

18. Huang Y.S. Genetic polymorphisms of drug-metabolizing enzymes and the susceptibility to antituberculosis drug-induced liver injury. Exp. Opin. Drug Metabolism & Toxicology, 2007, vol. 3, pp. 1-8.

19. Kinzig-Schippers M., Tomalik-Scharte D., Jetter A. et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob. Agents Chemother., 2005, vol. 49, pp. 1733-1738.

20. Lauterburg B.H., Smith C.V., Todd E.L. et al. Pharmacokinetics of the toxic hydrazine metabolites formed from isoniazid in humans. J. Pharmacol. Exp. Ther., 1985, vol. 235, pp. 566-570.

21. Leiro V., Fernandez-Villar A., Valverde D. et al. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in Caucasian population. Liver Internat., 2008, vol. 28, pp. 835-839.

22. Mitchell J.R., Thorgeisson U.P., Black M. et al. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydralazine metabolites. Clin. Pharmacology & Therapeutics, 1975, vol. 18, pp. 70-79.

23. Ohno M., Yamaguchi I., Yamamoto I. et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int. J. Tuberc. Lung Disease, 2000, vol. 4, pp. 256-261.

24. Ramamoorthy A., Liu Y., Philips S. et al. Regulation of microRNA expression by rifampin in human hepatocytes. Drug Metab. Dispos., 2013, vol. 41, no. 10, pp. 1763-1768.

25. Roy B., Chowdhury A., Kundu S. et al. Increased risk of antituberculosis drug- induced hepatotoxicity in individuals with gluthatione S-transferase M1 «null» mutation. J. Gastroenterol. Hepatol., 2001, vol. 16, pp. 1033-1037.

26. Roy B., Ghosh S.K., Sutraghar D. et al. Predisposition of antituberculosis drug induced hepatotoxicity by cytochrome P450 2E1 genotype and haplotype in pediatric patients. J. Gastroenterol. Hepatol., 2006, vol. 21, pp. 781-786.

27. Roy P.D., Majumder M., Roy B. Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics, 2008, vol. 9, no. 3, pp. 311-321.

28. Samani N.J., Tomaszewski M., Schunkert H. The personal genome – the future of personalised medicine? Lancet, 2010, vol. 375, no. 9725, pp. 1497-1498.

29. Sarma G.R., Immanuel C., Kailasam et al. Rifampin-induced realese of hydrazine from isoniazid: a possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am. Rev. Respir. Dis., 1986, vol. 133, pp. 1072-1075.

30. Shimizu Y., Dobashi K., Mita Y. et  al. DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. Tuberculosis, 2006, vol. 86, no. 5, pp. 374-381.

31. Singh J., Arora A., Garg P.K. et al. Antituberculosis treatment-induced hepatotoxicity: role of predictive factors. Postgraduate Med.J., 1995, vol. 71, pp. 359-362.

32. Sodhi C.P., Rana S.V., Mehta S.K. et al. Study of oxidative stress in isoniazid-induced hepatic injury in young rats with and without protein-energy malnutrition. J. Biochem. Molec. Toxicology, 1996, vol. 11, pp. 139-146.

33. Takahashi K., Tatsumi N., Fukami T. et al. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug. Metab. Pharmacokinet., 2014, vol. 29, no. 4, pp. 333-340.

34. Teixeira R.L., Morato R.G., Cabello P.H. et al. Genetic polymorphisms of NAT2, CYP2E1, GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Memórias do Instituto Oswaldo Cruz, 2011, vol. 106, no. 6, pp. 716-724.

35. Teixeira R.L., Lopes M., Suffys Ph. et al. Tuberculosis Pharmacogenetics: State of The Art, Tuberculosis – Current Issues in Diagnosis and Management (2013).

36. Timbrell J.A., Wright J.M., Baillie T.A. Monoacetylhydrazine as a metabolite of isoniazid in man. Clin. Pharmacol. Therap., 1977, vol. 22, pp. 602-608.

37. Timbrell J.A., Mitchell J.R., Snodgrass W.R. et al. Isoniazid hepatotoxicity: the relationship between covalent binding and metabolism in vivo. J. Pharmacol. Experim. Therapeutics, 1980, vol. 213, pp. 364-369.

38. Vuilleumier N., Rossier M.F., Chiappe A. et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Europ. J. Clin. Pharmacology, 2006, vol. 62, pp. 423-429.

39. Wang P.Y., Xie S.Y., Hao Q. et al. NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int. J. Tuberc. Lung Dis., 2012, vol. 16, no. 5, pp. 589-595.

40. Yamamoto T., Suou T., Hirayama C. Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype. Hepatology, 1986, vol. 6, pp. 295-298.


Review

For citations:


Mozhokina G.N., Kazakov A.V., Elistratova N.A., Popov S.A. Biotransformation enzymes for xenobiotics and personalization of treatment regimens for tuberculosis patients. Tuberculosis and Lung Diseases. 2016;94(4):6-12. (In Russ.) https://doi.org/10.21292/2075-1230-2016-94-4-6-12

Views: 1337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)