B-lymphocyte aggregation in the lung tissue is a pathogenic factor in experimental infection caused by Mycobacterium avium
https://doi.org/10.21292/2075-1230-2016-94-4-51-56
Abstract
About the Authors
I. A. LingeRussian Federation
Senior Researcher,
2, Yauzskaya Alleya, Moscow, 107564
A. V. Dyatlov
Russian Federation
post-graduate student,
2, Yauzskaya Alleya, Moscow, 107564
E. V. Kondratieva
Russian Federation
Senior Researcher,
2, Yauzskaya Alleya, Moscow, 107564
A. S. Аpt
Russian Federation
Laboratory Head,
2, Yauzskaya Alleya, Moscow, 107564
T. K. Kondratieva
Russian Federation
Senior Researcher,
2, Yauzskaya Alleya, Moscow, 107564
References
1. Kondratieva T.K., Linge I.А., Kondratieva E.V. et al. The formation of compact aggregation of B-lymphocytes in the lung tissue in case of mycobacterial infections in mice depends on the TNF production by these cells and it is not the factor of immunological defense of the host. Biokhimiya, 2014, vol. 79, iss. 12. pp. 1659-1665. (In Russ.)
2. Benson C.A. Disease due to the Mycobacterium avium complex in patients with AIDS: epidemiology and clinical syndrome. Clin. Infect. Dis., 1994, vol. 3, pp. S218-S222.
3. Ehlers S., Benini J., Held H.-D. et al. Alphabeta T cell receptor-positive cells and interferon-gamma, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J. Exp. Med., 2001, vol. 194, pp. 1847-1859.
4. Forbes J.R., Gros P. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol., 2001, vol. 9, pp. 397-405.
5. Griffith D.E. Nontuberculous mycobacteria. Curr. Opin. Pulm. Med., 1997, vol. 3, pp. 139-145.
6. Horsburgh C.R.Jr. Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. New Engl. J. Med., 1991, vol. 324, pp. 1332-1338.
7. Ignatov D., Kondratieva E., Azhikina T. et al. Mycobacterium avium-triggered diseases: pathogenomics. Cell Microbiol., 2011, vol. 14, pp. 808-818.
8. Inderlied C.B., Kemper C.A., Bermudez L.E. The Mycobacterium avium complex. Clin. Microbiol. Rev., 1993, vol. 6, pp. 266-310.
9. Kondratieva E., Logunova N., Majorov K. et al. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One, 2010, vol. 5, no. 5, pp. e10515.
10. Kondratieva E.V., Evstifeev V.V., Kondratieva T.K. et al. I/St mice hyper susceptible to Mycobacterium tuberculosis are resistant to M. avium. Infect. Immun., 2007, vol. 75, pp. 4762-4768.
11. Nightingale S.D., Byrd L.T., Southern P.M. et al. Incidence of Mycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients. J. Infect. Dis., 1992, vol. 165, pp. 1082-1085.
12. Nolt D., Michaels M.G., Wald E.R. Intrathoracic disease from nontuberculous mycobacteria in children: two cases and a review of the literature. Pediatrics, 2003, vol. 112, pp. e434.
13. Ottenhoff T., Kaufmann S. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathogens., 2012, vol. 8, pp. e1002607.
14. Phuah J.Y., Mattila J., Lin P.L. et al. Flynn JL. Activated B cells in the granulomas of nonhuman primates infected with mycobacterium tuberculosis. Am.J. Pathol., 2012, 181, no. 2, pp. 508-514.
15. Tsai M.C., Chakravarty S., Zhu G. et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol., 2006, vol. 8, pp. 218-232.
16. Ulrichs T., Kosmiadi G.A., Trusov V. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol., 2004, 204, pp. 217-228.
Review
For citations:
Linge I.A., Dyatlov A.V., Kondratieva E.V., Аpt A.S., Kondratieva T.K. B-lymphocyte aggregation in the lung tissue is a pathogenic factor in experimental infection caused by Mycobacterium avium. Tuberculosis and Lung Diseases. 2016;94(4):51-56. (In Russ.) https://doi.org/10.21292/2075-1230-2016-94-4-51-56