Preview

Tuberculosis and Lung Diseases

Advanced search

B-lymphocyte aggregation in the lung tissue is a pathogenic factor in experimental infection caused by Mycobacterium avium

https://doi.org/10.21292/2075-1230-2016-94-4-51-56

Abstract

When infecting the lungs with Mycobacterium avium of B6 line mice genetically susceptible to this infection the compact aggregates (follicles) of B-lymphocytes are formed with the peak at the 11-13th week after the infection. Physiological role of these cellular accumulations remained unclear. Having applied segregative genetic analysis to allele conglutination of Slc11a1 gene with two signs – quantity of mycobacteria and accumulation of B-cellular follicles to the F2 mice from crossing (В6 × I/St), one managed to find out that the quantity and size of follicles directly correlate with M. avium replication in the lungs. Thus this type of the lung tissue infiltration does not protect the host from infection and it is a pathogenic factor.

About the Authors

I. A. Linge
Central Tuberculosis Research Institute
Russian Federation

Senior Researcher,

2, Yauzskaya Alleya, Moscow, 107564



A. V. Dyatlov
Central Tuberculosis Research Institute
Russian Federation

post-graduate student,

2, Yauzskaya Alleya, Moscow, 107564



E. V. Kondratieva
Central Tuberculosis Research Institute
Russian Federation

Senior Researcher,

2, Yauzskaya Alleya, Moscow, 107564



A. S. Аpt
Central Tuberculosis Research Institute
Russian Federation

Laboratory Head,

2, Yauzskaya Alleya, Moscow, 107564



T. K. Kondratieva
Central Tuberculosis Research Institute
Russian Federation

Senior Researcher,

2, Yauzskaya Alleya, Moscow, 107564



References

1. Kondratieva T.K., Linge I.А., Kondratieva E.V. et al. The formation of compact aggregation of B-lymphocytes in the lung tissue in case of mycobacterial infections in mice depends on the TNF production by these cells and it is not the factor of immunological defense of the host. Biokhimiya, 2014, vol. 79, iss. 12. pp. 1659-1665. (In Russ.)

2. Benson C.A. Disease due to the Mycobacterium avium complex in patients with AIDS: epidemiology and clinical syndrome. Clin. Infect. Dis., 1994, vol. 3, pp. S218-S222.

3. Ehlers S., Benini J., Held H.-D. et al. Alphabeta T cell receptor-positive cells and interferon-gamma, but not inducible nitric oxide synthase, are critical for granuloma necrosis in a mouse model of mycobacteria-induced pulmonary immunopathology. J. Exp. Med., 2001, vol. 194, pp. 1847-1859.

4. Forbes J.R., Gros P. Divalent-metal transport by NRAMP proteins at the interface of  host-pathogen interactions. Trends Microbiol., 2001, vol. 9, pp. 397-405.

5. Griffith D.E. Nontuberculous mycobacteria. Curr. Opin. Pulm. Med., 1997, vol. 3, pp. 139-145.

6. Horsburgh C.R.Jr. Mycobacterium avium complex infection in  the  acquired immunodeficiency syndrome. New Engl. J. Med., 1991, vol. 324, pp. 1332-1338.

7. Ignatov D., Kondratieva E., Azhikina T. et al. Mycobacterium avium-triggered diseases: pathogenomics. Cell Microbiol., 2011, vol. 14, pp. 808-818.

8. Inderlied C.B., Kemper C.A., Bermudez L.E. The Mycobacterium avium complex. Clin. Microbiol. Rev., 1993, vol. 6, pp. 266-310.

9. Kondratieva E., Logunova N., Majorov K. et al. Host genetics in granuloma formation: human-like lung pathology in mice with reciprocal genetic susceptibility to M. tuberculosis and M. avium. PLoS One, 2010, vol. 5, no. 5, pp. e10515.

10. Kondratieva E.V., Evstifeev V.V., Kondratieva T.K. et al. I/St mice hyper susceptible to Mycobacterium tuberculosis are resistant to M. avium. Infect. Immun., 2007, vol. 75, pp. 4762-4768.

11. Nightingale S.D., Byrd L.T., Southern P.M. et al. Incidence of Mycobacterium avium-intracellulare complex bacteremia in human immunodeficiency virus-positive patients. J. Infect. Dis., 1992, vol. 165, pp. 1082-1085.

12. Nolt D., Michaels M.G., Wald E.R. Intrathoracic disease from nontuberculous mycobacteria in children: two cases and a review of the literature. Pediatrics, 2003, vol. 112, pp. e434.

13. Ottenhoff T., Kaufmann S. Vaccines against tuberculosis: where are  we and where do we need to go? PLoS Pathogens., 2012, vol. 8, pp. e1002607.

14. Phuah J.Y., Mattila J., Lin P.L. et al. Flynn JL. Activated B cells in the granulomas of nonhuman primates infected with mycobacterium tuberculosis. Am.J. Pathol., 2012, 181, no. 2, pp. 508-514.

15. Tsai M.C., Chakravarty S., Zhu G. et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol., 2006, vol. 8, pp. 218-232.

16. Ulrichs T., Kosmiadi G.A., Trusov V. et al. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J. Pathol., 2004, 204, pp. 217-228.


Review

For citations:


Linge I.A., Dyatlov A.V., Kondratieva E.V., Аpt A.S., Kondratieva T.K. B-lymphocyte aggregation in the lung tissue is a pathogenic factor in experimental infection caused by Mycobacterium avium. Tuberculosis and Lung Diseases. 2016;94(4):51-56. (In Russ.) https://doi.org/10.21292/2075-1230-2016-94-4-51-56

Views: 783


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)