Preview

Tuberculosis and Lung Diseases

Advanced search

Tuberculosis and lipid exchange

https://doi.org/10.21292/2075-1230-2016-94-6-53-63

Abstract

The review includes 3 parts. The first part describes the current understanding of the ways of lipid transportation in the human body, structural and functional specific features of various classes of lipoproteins and their role in the adaptation and pathology development. The second part includes the current data about the role of cholesterine and other lipids to the less degree in persistence and replication of tuberculous mycobacteria in the human body. The third part presents the view of various studies of lipid metabolism in case tuberculosis in humans and guinea pigs, conducted in the second half of the 20th cent.

About the Authors

G. O. Kaminskaya
Central Tuberculosis Research Institute
Russian Federation

Doctor of Medical Sciences, Professor, Chief Researcher of Pathologic Anatomy and Biochemistry Department,

2, Yauzskaya Alleya, Moscow, 107564



R. Yu. Аbdullaev
Central Tuberculosis Research Institute
Russian Federation

Professor, Doctor of Medical Sciences, Head of Biochemical Laboratory,

2, Yauzskaya Alleya, Moscow, 107564



References

1. Birkun A.A. Disorders of fat metabolism in the lungs in case tuberculosis (pathomorphological and histochemical description). Arkhiv Patologii, 1963, vol. 25, no. 4, pp. 23-31. (In Russ.)

2. Gridina G.D. Nekotorye mekhanizmy narusheniy lipidnogo obmena pri tuberkuleze legkikh. Diss. kand. biol. nauk. [Certain mechanisms of lipid metabolism disorders in case of pulmonary tuberculosis. Cand. Diss.]. Moscow, 1870.

3. Grozovskaya M.S. Biokhimicheskie faktory aterogeneza pri sochetanii ateroskleroza i tuberkuleza (eksperimental’noe issledovanie). Diss. kand. biol. nauk. [Biochemical factors of atherogenesis in case of atherosclerosis and concurrent tuberculosis (experimental study). Cand. Diss.]. Minsk, 1988.

4. Gurevich G.L. Znachenie issledovaniya pokazateley obmena lipidov u bolnykh s vpervye vyyavlennym tuberkulezom legkikh. Diss. kand. med. nauk. [The value of studying the lipid metabolism rates new pulmonary tuberculosis patients. Cand. Diss.]. Minsk, 1982.

5. Kaminskaya G.O. Sostoyanie lipidnogo obmena u bolnykh tuberkulezom v usloviyakh sovremennogo kompleksnogo lecheniya. Diss. kand. med. nauk. [State of lipid metabolism in tuberculosis patents under the condition of modern intregtaed treatment. Cand. Diss.]. Moscow, 1965.

6. Kamyshnikov V.S. Osobennosti kholesterinopatii i aterogeneza pri legochnoj patologii. Diss. dokt. med. nauk. [Specific cholesterol disorders and atherogenesis in case of pulmonary disorders. Doct. Diss.]. Moscow, 1990.

7. Kaneva А.M., Potolitsyna N.N., Lyudinina А.Yu. et al. Low content of E apolipoprotein as a risk factor of the increase in the ratio of apolipoprotein B and apolipoprotein A-1 in healthy men with normal lipidemia. Klin.-Lab. Diagn., 2014, no. 12, pp. 32-36. (In Russ.)

8. Katerov V.I. On the issue of cholerestine metabolism in tuberculosis patients. Vopr. Tuberkuleza, 1929, vol. 7, no. 6, pp. 641-654. (In Russ.)

9. Kolomenskaya L.I. Otsenka nekotorykh pokazateley lipidnogo obmena u bol’nykh tuberkulezom legkikh s patologiey pecheni. Diss. cand. med. nauk. [Assessment of certain rates of lipid metabolism in pulmonary tuberculosis patients with concurrent liver disorders. Cand. Diss.]. Alma-Ata, 1977.

10. Kotkina T.I., Titov V.N. Positioning isomers of triglycerides in fat and apo B-100 lipoproteins. Hexadecoic and olein variants of fatty acids metabolism – substrates for energy accumulation. Klin.-Lab. Diagn., 2014, no. 1, pp. 22-26, 39-43. (In Russ.)

11. Kotkina T.I., Titov V.N., Parkhimovich R.M. Other understanding of β-oxidation of fatty acids in peroxisomes, chondriosomes and ketone bodies. Diabetic acidotic coma as acute deficiency of acetyl coenzyme A and adenosine triphosphate. Klin.-Lab. Diagn., 2014, no. 3. pp. 14-23. (In Russ.)

12. Metalnikov S.I. 1907, cited as per I. Ya. Goldenberg. Estestvennaya rezistentnost‘ k tuberkulezu v eksperimente. [Natural resistance to tuberculosis in the experiment]. Kharkov, 1939.

13. Model L.M. Troficheskie faktory tuberkuleznogo immuniteta. Obmen veshhestv pri tuberkuleze. [Trophic factors of immunity against tuberculosis. Metabolism in tuberculosis]. Moscow, 1937, pp. 13-26.

14. Panchenkov T.P. Lipolytic rates of animal blood serum with various sensitivity to tuberculosis. Vopr. Tub., 1927, no. 3, pp. 1-6. (In Russ.)

15. Radkevich R.A. Izuchenie tkanevykh distrofiy pri klinicheskom i eksperimentalnom tuberkuleze (izmeneniya v lipoidnom i vodnom sostave tkaney). Diss. dokt. med. nauk. [Study of tissue dystrophia in clinical and experimental tuberculosis (changes in the lipoid and water composition of tissues). Doct. Diss.]. Moscow, 1952.

16. Safaryan M.D. Vzaimosvyaz techeniya tuberkuleza legkikh s sostoyaniem lipidnogo i belkovogo obmena i klinicheskaya effektivnost’ ikh korrektsii v protsesse kompleksnoy khimioterapii. Diss. dokt. med. nauk. [Correlation between the course of pulmonary tuberculosis and lipid and protein metabolism and clinical efficiency of their management within integrated chemotherapy. Doct. Diss.]. Moscow, 1992.

17. Titov V.N. Protein transporting cholesterol ester, physical and chemical properties, function and role in pathogenesis of atherosclerosis and inhibition basics. Klin.-Lab. Diagn., 2014, no. 8, pp. 29-36. (In Russ.)

18. Titov V.N. High content of hexadecoic fatty acid in food – the main cause of the increase in the level of cholerestine low density lipoprotein and arterial intima atheromatosis. Klin.-Lab. Diagn., 2013, no. 2, pp. 3-10. (In Russ.)

19. Titov V.N. Insulin: initiating the pool of insulin dependent cells, targeted transfer of triglycerides and increase of kinetic parameters of fatty acids oxydation. Klin.-Lab. Diagn., 2014, no. 4, pp. 27-40. (In Russ.)

20. Titov V.N. Clinical biochemistry of lypolipidemic therapy and statins action mechanisms. Fatty acids, statins and diabetes. Klin.-Lab. Diagn., 2014, no. 2, pp. 4-15. (In Russ.)

21. Titov V.N. Lipoproteids as a specific transportation system of the blood stream. Vestnik RAMN, 1998, no. 4, pp. 3-7. (In Russ.)

22. Titov V.N. Establishment in phylogenesis of fat cells, biological function of trophology, biological reactions of exo- and endotrophia, functional difference between visceral fat cells and subcutaneous adipocytes. Klin.-Lab. Diagn., 2015, no. 2, pp. 4-12. (In Russ.)

23. Titov V.N., Аmelyushkina V.А., Kotkina T.I., Аripovskiy А.V. Various conformations of Apo B-100 in lipoproteins of low and very low density. Modified lipoproteins and destructive inflammation in artery intima. Klin.-Lab. Diagn., 2014, no. 2, pp. 27-38. (In Russ.)

24. Titov V.N., Аmelyushkina V.А., Rozhkova T.А. Alternative view at the diagnostics of hyperlipoproteinemia, cholesterine of low density lipoproteins and statins’ action. Klin.-Lab. Diagn., 2015, no. 1, pp. 27-38. (In Russ.)

25. Titov V.N., Rozhkova T.А., Аmelyushkina V.А. Clinical biochemistry of hyperlipilemia and hyperglycemia, insulin and fatty acids metabolism. Hypoglycemic action of hypolipidemic agents. Klin.-Lab. Diagn., 2014, no. 3, pp. 4-13. (In Russ.)

26. Chaika V.V. Soderzhanie lipidov v krovi tuberkuleznykh bolnykh. Voprosy allergii i immuniteta pri tuberkuleze: sb. trudov. [Lipid content in the blood of tuberculosis patients. Issues of allergy and immunity in tuberculosis. Coll. of articles]. Leningrad, 1948, pp. 288-334.

27. Ahmad N.H., Sakri F., Mokhin A. et al. Low serum high density lipoprotein cholesterol concentration is an independent predictor for enhanced inflammation and endothelial activation. PLOS ONE, (doi; 10.1371/journal.pone.0116867 january 23.2015).

28. Davis B.D., Dubos R.J. The inhibitory effect of lipase on bacterial growth in media containing fatty acid esters. J. Bact., 1948, vol. 55, pp. 11-23.

29. Kim Mi-J., Wainwright H.C., Locketz M. et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Molecular Medicine, 2010, vol. 2, pp. 258-274.

30. Klink M., Brzezinska M., Szulc J. et al. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis. PLoS ONE, 8 (9), 73333 (doi: 10.1371 / journal. pone. 0073333)

31. Lobato L.S., Rosa P.S., da Silva Ferreira J. et al. Statins increase rifampin mycobactericidal effect. Antimicrobial Agents and Chemotherapy, 2014, vol. 58, no. 10, pp. 5766-5774.

32. Mahajan S., Dkhar H.K., Chandra V. et al. Mycobacterium tuberculosis modulates macrophage lipid-sensing nuclear receptor PPARy and TR4 for survival. J. Immunol., 2012, vol. 188, pp. 5593-5603.

33. Marsche G., Frank S., Raynes J.G. et al. The lipidation status of acute-phase protein serum amyloid A determines cholesterol mobilization via scavenger receptor class B, type I. Biochem. J., 2007, vol. 402, pp. 117-124.

34. Martens G.W., Arikan M.C., Lee J. et al. Hypercholesterolemia impairs immunity to tuberculosis. Infection and Immunity, 2008, vol. 76, no. 8, pp. 3464-3472.

35. Palanisamy G.S., Kirk N.M., Askart D.F. et al. Uptake and accumulation of oxidized low-density lipoprotein during Mycobacterium tuberculosis infection un guinea pigs. PLoS One, 7 (3). e 34148; doi: 10.1371 / journal. pone. 0034148

36. Patnode R.A., Hudgins P.S. Effect of experimental tuberculosis on the lipids in rabbit tissues. Am. Rev. Tuberc., 1957, vol. 75, pp. 83-92.

37. Qullet H., Johnston J.B., Oritz de Montellano P.R. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis. Trends Microbiol., 2011, vol. 19, no. 11, pp. 530-539.

38. Sahin F., Yildiz P. Distinctive biochemical changes in pulmonary tuberculosis and pneumonia. Arch. Med. Sci., 2013, vol. 9, no. 4, pp. 656-661.

39. Seabra P. Die Lipasekataster. Hyg. Infekt.-Kr., 1955, Bd.140, pp. s573-s578.

40. Stoll L. Zur Bedeutung der Lipase bei der Tuberkulose. Beitrage Klin. Tuberk., 1959, Bd. 119, no. 5, pp. s439-s445.

41. Thomas S.T., Vander Ven B.C., Sherman D.R. et al. Pahtway profiling in Mycobacterium tuberculosis. Elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J. Biol. Chem., 2011, vol. 286, no. 51, pp. 43668-43678.

42. Tran-Dinh A., Diallo D., Delbose S. et al. HDL and endothelial protection. British J. Pharmacol., 2013, vol. 169, pp. 493-511.

43. Vander Ven B.C., Fathey R.J., Lee W. et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium, s metabolism is constrained by the intracellular environment. PLoS Pathog., 1 (2), e 1004679; doi: 10.1371/ journal. ppat. 1004679

44. Wipperman M.F., Sampson N.S., Thomas S.T. Pathogen Roid Rage: Cholesterol utilization by Mycobacterium tuberculosis. Crit. Rev. Biochem. Mol. Biol., 2014, vol. 49, no. 4, pp. 269-293.


Review

For citations:


Kaminskaya G.O., Аbdullaev R.Yu. Tuberculosis and lipid exchange. Tuberculosis and Lung Diseases. 2016;94(6):53-63. (In Russ.) https://doi.org/10.21292/2075-1230-2016-94-6-53-63

Views: 1289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2075-1230 (Print)
ISSN 2542-1506 (Online)