NAT2 gene polymorphism and development of multiple drug resistant tuberculosis in patients with HIV infection
https://doi.org/10.21292/2075-1230-2021-99-10-52-59
Abstract
The objective: to run the comparative study of frequencies of variants of polymorphic loci of NAT2 gene in the development of multiple drug resistant tuberculosis (MDR TB) and drug sensitive tuberculosis (DS TB) in patients with HIV infection.
Subjects and Methods. 70 patients with TB/HIV co-infection at the age from 24 to 58 years old were examined when admitted to hospital.
54 (77.1%) patients were new cases, the remaining 16 cases underwent repeated treatment. MDR TB was diagnosed in 47 patients: 33 patients had primary MDR, and 14 patients suffered from acquired MDR. Drug susceptible tuberculosis was diagnosed in 23 patients. Allele-specific PCR was used for genotyping of patients by rs1208, rs1799930, and rs1799929 polymorphic loci of N-acetyltransferase-2 (NAT2) gene.
Results. A high probability of carriage of wild genotype of NAT2Arg197Arg(G590G) and allele NAT2Arg197(590G) was revealed in MDR TB(n = 70, OR = 3.63, p = 0.02 and OR = 2.24, p = 0.05, respectively) and it was found low in DS TB (n = 70, OR = 0.28, p = 0.02 and OR = 0.45, p = 0.05, respectively). Among patients with acquired MDR TB (n = 14), carriers of the wild genotype of NAT2Arg197Arg(G590G) prevailed (n = 11; 79%), of them 10 were chronic cases and 1 had a relapse. Among patients with DS TB (n = 23), the carriage of the wild genotype of NAT2Arg197Arg G590G was found in 35% of patients (n = 8), of them 7 were new cases and 1 patient suffered from chronic tuberculosis.
Carriage of a combination of three studied wild genotypes of NAT2Lys268Lys(A803A)×NAT2Arg197Arg(G590G)×NAT2Leu161Leu(C481C) was more often recorded in secondary MDR TB. In secondary MDR TB, the risk of carriage of wild genotypes of NAT2 gene versus primary MDR TB turned out to be high among all cases of diagnosed MDR TB (n = 43, OR = 6.67 [1.28-34.86], p = 0.0277 ) and in the entire sample (n = 65, OR = 11.91 [2.32-61.11], p = 0.0039).
Conclusion. The results of genotyping in patients with TB/HIV co-infection and secondary MDR TB are associated with the carriage of acombination of wild genotypes of gene NAT2Lys268Lys(A803A)×NAT2Arg197Arg(G590G)×NAT2Leu161Leu(C481C).
About the Authors
N. V. MaltsevaRussian Federation
Nina V. Maltseva, Doctor of Biological Sciences, Head of Molecular Biology Research Laboratory
5, Stroiteley Ave., Novokuznetsk, Kemerovo Region, 654005, phone: +7 (3843) 45-56-41
I. B. Viktorova
Russian Federation
Irina B. Viktorova, Candidate of Medical Sciences, Associate Professor of Phthisiopulmonology Department
5, Stroiteley Ave., Novokuznetsk, Kemerovo Region, 654005, phone/fax: +7 (3843) 45-42-19
O. M. Kazantseva
Russian Federation
Olga M. Kazantseva, Junior Researcher of Molecular Biology Research Laboratory
5, Stroiteley Ave., Novokuznetsk, Kemerovo Region, 654005, phone: +7 (3843) 45-56-41
A. L. Khanin
Russian Federation
Arkadiy L. Khanin, Candidate of Medical Sciences, Professor, Head of Phthisiopulmonology Department
5, Stroiteley Ave., Novokuznetsk, Kemerovo Region, 654005, phone:/fax: +7 (3843) 45-42-19
References
1. Vasilyeva I.А., Voronin E.E., Pokrovskiy V.V., Аksenova V.А., Bagdasaryan T.R., Baryshnikova L.А., Valiev R.Sh., Viktorova I.B., Zagdyn Z.M., Zimina V.N., Kazimirova N.E., Karpina N.L., Kayukova S.I., Klevno N.I., Kononchuk O.N., Kravchenko А.V., Larionova E.E., Maryandyshev А.O., Mikhaylovskiy А.M., Morozova T.I., Okhtyarkina V.V., Panteleev А.M., Samoylova А.G., Sevastyanova E.V., Sinitsyn M.V., Skornyakov S.N., Stakhanov V.А., Chernousova L.N., Ergeshov А.E., Yurin O.G. Federalnye klinicheskie rekomendatsii po diagnostike i lecheniyu tuberkuleza u bolnykh VICH-infektsiey. [Federal clinical recommendations on diagnostics and treatment of tuberculous in HIV patients]. Moscow, 2016, 42 p. http://roftb.ru/netcat_files/doks2016/rec2016.pdf.
2. Kaminskiy G.D., Kudlay D.А., Panova А.E., Parolina L.E., Peregudova А.B., Pshenichnaya N.Yu., Samoylova А.G., Testov V.V., Tinkova V.V. Taktika vracha pri vyyavlenii, diagnostike i profilaktike sochetannoy infektsii VICH i tuberkulez: prakticheskoe rukovodstvo [Tactics of the physician in the detection, diagnosis and prevention of TB/HIV coinfection. Practical guide]. I.A. Vasilyeva, eds., Moscow, 2020, 152 p.
3. Kachanova А.А., Pimenova Yu.А., Shuev G.N., Аkmalova K.А., Sozaeva Zh.А., Krasnova N.M., Grishina E.А., Sychev D.А. The influence of polymorphic markers of the NAT2 gene on the risk of adverse reactions in patients with pulmonary tuberculosis treated with isoniazid and rifampicin. Bezopasnost i Risk Farmakoterapii, 2021, vol. 9, no. 1, pp. 25-33. (In Russ.)
4. Popov S.А., Sabgayda T.P., Radina T.S. Assessment of correlation between HIV infection and tuberculosis with multiple drug resistance. Tuberculosis and Lung Diseases, 2018, vol. 96, no. 7, pp. 25-32. (In Russ.)
5. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Copenhagen, Regional Office for Europe, WHO, 2019, License CC BY-NC-SA 3.0 IGO. (In Russ.)
6. Chernousova L.N., Sevastyanova E.V., Larionova E.E., Smirnova T.G., Аndreevskaya S.N., Popov S.А., Zhuravlev V.Yu., Puzanov V.А., Maryandyshev А.O., Vakhrusheva D.V., Kravchenko M.А., Safonova S.G., Vasilyeva I.А., Ergeshov А.E. Federalnye klinicheskie rekomendatsii po organizatsii i provedeniyu mikrobiologicheskoy i molekulyarno-geneticheskoy diagnostiki tuberkuleza. [Federal clinical recommendations in organization and implementation of microbiological and molecular-genetic diagnostics of tuberculosis]. Moscow, 2014, 36 p. http://roftb.ru/netcat_files/doks2015/rec8.pdf.
7. Yunusbaeva M.M., Borodina L.Ya., Bilalov F.S., Sharipov R.А., Nasibullin T.R., Yunusbaev B.B. Efficacy of treatment of extensive drug resistant tuberculosis in patients with different genotypes in the biotransformation enzyme genes of CYP2B6 and NAT2. Tuberculosis and Lung Diseases, 2020, vol. 98, no. 6, pp. 40-46. (In Russ.)
8. Cobat A., Orlova M., Alcais A., Schurr E. Genetics of susceptibility and resistance to infection // Methods in Microbiology. ‒ 2010. ‒ № 37. ‒ Р. 67-99. Doi:10.1016/s0580-9517(10)37004-8.
9. Cohn J. A. HIV-1 infection in injection drug users // Infect. Dis. Clin. North Am. ‒ 2002. ‒ № 16. ‒ Р. 745-770. DOI: 10.1016/s0891-5520(02)00012-0.
10. Conaty S. J., Hayward A. C., Story A., Glynn J. R., Drobinewski F. A., Watson J. M. Explaining risk factors for drug-resistant tuberculosis in England and Wales: contribution of primary and secondary drug resistance // Epidemiol. Infect. 2004. ‒ Vol. 132, № 6. ‒ Р. 1099-1108. DOI: 10.1017/S0950268804002869.
11. Gurumurthy P., Ramachandran G., Hemanth Kumar A. K., Rajasekaran S., Padmapriyadarsini C., Swaminathan S., Bhagavathy S., Venkatesan P., Sekar L., Mahilmaran A., Ravichandran N., Paramesh P. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease // Antimicrob. Agents Chemother. ‒ 2004. Vol. 48, № 11. ‒ Р. 4473-4475. DOI:10.1128/AAC.48.11.4473-4475.2004. PMID: 15504887; PMCID: PMC525439.
12. Kawai V., Soto G., Gilman R. H., Bautista C. T., Caviedes L., Huaroto L., Ticona E., Ortiz J., Tovar M., Chavez V., Rodriguez R., Escombe A. R., Evans C. A. Tuberculosis mortality, drug resistance, and infectiousness in patients with and without HIV infection in Peru // Am. J. Trop. Med. Hyg. 2006. ‒ Vol. 75, № 6. ‒ Р. 1027-1033.
13. Kinzig-Schippers M., Tomalik-Scharte D., Jetter A., Scheidel B., Jakob V., Rodamer M., Cascorbi I., Doroshyenko O., Sörgel F., Fuhr U. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? // Antimicrob. Agents Chemother. ‒ 2005. ‒ Vol. 49, № 5. ‒ Р. 1733-1738. DOI: 10.1128/AAC.49.5.1733-1738.2005.
14. Miyahara R., Yanai H., Mahasirimongkol S., Toyo-Oka L., Tokunaga K. Determinants of TB related death from tuberculosis patients in the Northen Thailand // Rus. J. Infect. Immunity. ‒ 2018. ‒ Vol. 8, № 4. ‒ Р. 574. DOI:10.15789/2220-7619-2018-4-6.32.
15. Mthiyane T., Millard J., Adamson J. et al. N-acetyltransferase 2 genotypes among zulu-speaking south africans and isoniazid and N-acetyl-isoniazid pharmacokinetics during antituberculosis treatment // Antimicrob. Agents Chemother. ‒ 2020. ‒ Vol. 64, № 4. ‒ Р. e02376-19. Published 2020 Mar 24. DOI:10.1128/AAC.02376-19.
16. Patel K. B., Belmonte R., Crowe H. M. Drug malabsorption and resistant tuberculosis in HIV-infected patients // N. Engl. J. Med. ‒ 1995. ‒ Vol. 332, № 5. ‒ Р. 336-337. DOI: 10.1056/NEJM199502023320518.
17. Sahai J., Gallicano K., Swick L., Tailor S., Garber G., Seguin I., Oliveras L., Walker S., Rachlis A., Cameron D.W. Reduced plasma concentrations of antituberculosis drugs in patients with HIV-infection // Ann. Intern. Med. ‒ 1997. ‒ Vol. 127, № 4. ‒ Р. 289-293. DOI :10.7326/0003-4819-127-4-199708150-00006.
18. Van Oosterhout J. J., Dzinjalamala F. K., Dimba A., Waterhouse D., Davies G., Zijlstra E. E., Molyneux M. E., Molyneux E. M., Ward S. Pharmacokinetics of antituberculosis drugs in HIV-positive and HIV-negative adults in Malawi // Antimicrob. Agents Chemother. ‒ 2015. ‒ Vol. 59, № 10. ‒ Р. 6175-6180. DOI:10.1128/AAC.01193-15.
19. Wells C. D., Cegielski J. P., Nelson L. J., Laserson K. F., Holtz T. H., Finlay A., Castro K. G., Weyer K. HIV infection and multidrug-resistant tuberculosis: the perfect storm // J. Infect. Dis. ‒ 2007. ‒ Vol. 196, № 1. ‒ Р. 86-107. DOI: 10.1086/518665.
20. Yuliwulandari R., Prayuni K., Razari I., Susilowati R. W., Zulhamidah Y., Soedarsono S., Sofro A. S. M., Tokunaga K. Genetic characterization of N-acetyltransferase 2 variants in acquired multidrug-resistant tuberculosis in Indonesia // Pharmacogenomics. ‒ 2021. ‒ Vol. 22, № 3. ‒ Р. 157-163. DOI: 10.2217/pgs-2020-0163. Epub 2021 Jan 5. PMID: 33399479.
Review
For citations:
Maltseva N.V., Viktorova I.B., Kazantseva O.M., Khanin A.L. NAT2 gene polymorphism and development of multiple drug resistant tuberculosis in patients with HIV infection. Tuberculosis and Lung Diseases. 2021;99(10):52-59. (In Russ.) https://doi.org/10.21292/2075-1230-2021-99-10-52-59